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Abstract. We propose a general solution method framework based on
a Collaborative Agent Teams (CAT) architecture to tackle large-scale
mixed-integer optimization problems with complex structures. This frame-
work introduces several conceptual improvements over previous agent
teams’ approaches. We discuss how to configure the three key compo-
nents of a CAT solver for multidimensional optimization problems: the
problem representation, the design of agents, and the information sharing
mechanisms between agents. Implementation guidelines are also given.

Keywords: Multidimensional Optimization, Asynchronous Teams

1 Introduction

Despite of the continuous improvements of the commercial/academic solvers and
of the exact and solution methods, many optimization problems are so complex
that finding good-quality solutions remains challenging. These problems are too
large (in terms of size) and complex (in terms of structure) to be solved di-
rectly through classical solution methods (e.g., [1, 2]). This paper extends the
latter by generalizing and formulating the CAT (Collaborative Agent Teams)
methodology for any optimization problem. We propose a general framework
for CAT, an agent-based methodology based on the Asynchronous Teams (A-
Teams) paradigm that is designed to tackle complex multi-dimensional opti-
mization problems. We discuss how to design the three key components of a
CAT solver: the problem representation; the design of the agents and their job
description; the information sharing mechanisms between the agents.

”Decision problem” refers to a real-world issue requiring a solution as per-
ceived by decision-makers. A decision problem can often be expressed qualita-
tively in terms of a choice between alternative options. An ”optimization model”
refers to a mathematical system formulated to represent a view of a decision
problem. It is specified in terms of a set of decision variables and parameters.
It incorporates objective function(s) and a constraint set. ”Optimization algo-
rithm” and ”solution method” refer to programmable procedures developed to
generate high-quality solutions for a given optimization model. The Simplex and
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branch-and-bound methods, greedy heuristics and tabu search metaheuristics,
are all examples of optimization algorithms, including simulation-optimization
approaches [3]. A ”heuristic” is a basic solution method that finds, in a rea-
sonable amount of time, a ”satisfying” solution to the considered optimization
model. Optimality is generally not guaranteed. A ”metaheuristic” (MH) is a
higher-level methodology that guides underlying heuristics for solving the opti-
mization problem. The term ”solution” is used to designate a set of values for the
decision variables that satisfy all the constraints of a given optimization model.

The paper is organized as follows. Section 2 presents a literature review of
operations research approaches that contributed to design CAT. In Section 3,
CAT and its components are presented. Section 4 concludes the paper.

2 Strategies to Tackle Complex Problems/Models

We describe here algorithmic strategies to solve complex decision problems and
the optimization models used to represent them. We also position their relative
strengths in achieving better performance or tackling more complex problems. A
general description of relevant strategies is provided rather than a technical de-
scription of algorithms. Some strategies are not exclusive: they can be hybridized
to tackle the most challenging problems (which opens the door for CAT).

2.1 Classical Approaches, Parallel Algorithms and Hybridization

Many optimization models are today ”easy” to solve, even with the use of a
solver (CPLEX/Gurobi) or with the help of filtering techniques to reduce the
search space [4, 5]. However, several optimization models are hard to solve using
solvers, especially when the model is nonlinear/stochastic. Models with a single
category of binary decision variables and few constraint types are often solved
to near-optimality in a reasonable amount of time with MHs (e.g., the tabu
search MH is efficient for the simple facility location model [6]). MHs can usually
successfully tackle such problems even if they have nonlinear objective functions
or constraints. Local-search MHs are efficient on these problems because it is
straightforward to create a new solution by applying a local transformation on a
given solution. When multiple types of integer, binary and continuous decision
variables are present in the model, these approaches may not be effective.

Most state-of-the-art commercial solvers (CPLEX, Gurobi) use several pro-
cessors at a time if possible. According to [7], parallelism [in MHs] allows for im-
proved solution quality and reduction in the resolution time. Two strategies are
especially relevant: (1) parallelization of the search: several copies of a given MH
work in parallel, each having its own parameter settings and possibly exchang-
ing solutions synchronously or asynchronously during the search process; (2)
parallelization of some of the most computationally-intensive tasks of the search
process (typically solution quality evaluation or neighborhood exploration).

Hybridization refers to the combination of different types of algorithms into
one methodology [8]. The first main technique combines various MHs [9], hoping
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that one method’s strengths compensate for the other method’s weaknesses. Sev-
eral hybridization strategies can be designed for any two given MHs, resulting
in a larger number of potential solution methods. The second main hybridiza-
tion technique combines MHs with exact methods [10]. These hybrid solution
methods are often called matheuristics [11]. They effectively combine the ability
of MHs to handle a large number of binary/integer decision variables, with the
LP- (linear program) or MIP- (mixed integer program) based methods’ ability
to handle a large number of constraints and continuous decision variables.

2.2 Decomposition and Model-Based Strategies

Some methods use the optimization model’s formulation to break it down into
smaller/easier problems. Since the 1960s, decomposition-based solution methods
(e.g., [12, 13]) are effective at solving large optimization models that exhibit a
specific model structure. The efficiency of these methods lies in clever reformu-
lation of the optimization model and the availability of a sub-model that can
be solved very fast. However, when the decomposed sub-models they yield are
themselves difficult to solve, these methods may not perform well.

Multilevel techniques [14] are another family of methods making use of the
model formulation. They start from the optimization model, then iteratively and
recursively generate a smaller and smaller model by coarsening until a relatively
small model is obtained, creating a hierarchy of optimization models [9]. A solu-
tion to the smallest model is found by some optimization algorithm. Then, the
solution to this problem is successively transformed into a solution to the model
of the next level until a solution to the original optimization model is found.

Recently, a number of progressive variable fixing solution methods have been
proposed to solve complex models. The simplest method, the LP-rounding strat-
egy [15], uses a solver to obtain the LP relaxation of the model. The values of
integer and binary decision variables that are fractional in the LP relaxation are
then rounded to obtain an integer-feasible solution. In [16], a sequence of linear
relaxations of the original optimization model is solved, and as many binary
and integer variables as possible are fixed at every iteration. These methods are
effective to solve problems with a small number of binary and a large number of
continuous decision variables.

2.3 Distributed Decision Making and Agent Optimization

Another strategy to cope with model complexity is to work at the decision prob-
lem level rather than directly on the optimization model. The decision problem
can often be partitioned into various interconnected sub-problems under the re-
sponsibility of distinct organizational units. For each sub-problem, a sub-model
is formulated and solved using an optimization algorithm. This approach has
many advantages and is even more suited to decision problems involving mul-
tiple decision-makers. According to [17], ”distributed decision making can be
useful in order to better understand/manipulate a complex decision situation”.
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Multi-agent systems (MAS) and agent-based optimization algorithms have
been used recently to model/analyze complex decision problems. MAS formalize
complex decision problems as networks of simpler decision problems, each of
these problems being tackled by a separate agent [17]. Depending on the degree
of sophistication of the approach, the agent may use basic rules to make decisions,
or formulate an optimization model which is then solved with an appropriate
(exact or heuristic) optimization algorithm. An example of this approach is A-
Teams [18], a cooperative MAS used for various problems (e.g. [1, 19–21]).

2.4 Towards an Integrated Optimization Framework

Many approaches have integrated the above strategies to solve complex opti-
mization models. Their strengths are often complementary: a MAS is indeed well
suited to implement parallel and potentially hybrid optimization algorithms. A
hybrid matheuristic can couple two algorithms working in parallel rather than
sequentially. Despite these advantages, very few tools have been proposed to com-
bine the strengths from all these strategies into one solution system. The five
following elements should be present in an optimization framework designed for
complex decision problems. (1) Draw inspiration from the decision problem and
alternative optimization model formulations to design adapted solution meth-
ods, instead of one perspective. (2) Use partitioning strategies through organiza-
tional decomposition (at the problem level) or mathematical decomposition (at
the model level), while working on each partition simultaneously in parallel. (3)
Use the type of optimization algorithm that works best for each sub-model. (4)
Share information/solutions between different optimization strategies. (5) Com-
bine good solutions from sub-models into good solutions to the complete model.
An optimization framework based on these characteristics is now proposed.

3 CAT as an Agent-Based Solution Method

CAT is a hybrid distributed agent-based solution method to solve complex de-
cision problems and associated optimization models that cannot be efficiently
addressed using classical MHs or mathematical decomposition methods. The
approach builds on the A-Teams paradigm [18], and it relies on the foundations
of Subsection 2.4. We use the location-routing problem (LRP) [22] to illustrate
the CAT concepts. It involves decisions on the number and location of distri-
bution centers (DCs) in order to serve customers at minimum cost, and finding
the best delivery schedules and vehicle routes to serve the customers. ”An asyn-
chronous team is a team of software agents that cooperate to solve a problem
by dynamically evolving a shared population of solutions” [18]. Agents are au-
tonomous: they incorporate their own representation of the problem, and rules
to choose when to work, what to work on and when to stop working. The ap-
proach is well suited to implement multiple representations of a problem, such as
advocated above. Previous work suggests that A-Teams can host a large variety
of optimization algorithms. Whereas some applications [1] use simple heuristics
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and linear and integer programming, recent applications [20, 21] employ MHs
(e.g., tabu search). When facing complex optimization models, it makes sense to
use the best tools for each (sub-)model. A MAS allows for that much flexibility.

3.1 Problem Solving Approach

The following steps are required to solve optimization problems with CAT: (1)
identify different relevant points of view (dimensions) to examine the decision
problem; (2) formulate optimization models and sub-models for these dimen-
sional views; (3) design optimization algorithms to solve each sub-model; (4)
design optimization algorithms to integrate solutions from sub-models into so-
lutions of the complete optimization models. These steps are explained below.

Views and Sub-Problems, Models and Sub-Models. Complex deci-
sion problems can be analyzed from different views, that is, a filter/lens which
emphasizes, reduces or reshapes some aspects of the decision problem to solve.
It can reflect a stakeholder’s perceptions. The integrated view refers to a holistic
apprehension of the complete decision problem, that is, one that looks at all rel-
evant facets from a centralized standpoint. Problem solving with CAT requires
addressing the problem with an integrated view, and with alternative dimen-
sional views. Dimensional views are rearrangements of the problem into systems
of interrelated sub-problems. These sub-problems may cover only a subset of the
objectives and decisions of the original problem and they may involve a reduc-
tion of some of its facets. Dimensional views are used to reduce the complexity
of the problem by providing effective partitioning schemes. Dimensional views
must be selected before optimization models can be formulated. A dimensional
view may require the definition of several sub-problems. A sub-problem contains
a portion of the decisions and context associated with the decision problem.
The number of sub-problems used and the exact definition of each of them are
critical issues. Useful sub-problems possess the following characteristics. First,
they make sense from a business standpoint (i.e., they are easily understand-
able by a decision-maker). Second, the set of all the sub-problems associated
with a dimensional view must constitute a valid representation of the complete
decision problem. For the LRP, the following two dimensional views could be de-
fined. First, a functional view is associated with the types of decisions (location,
customer allocation to facilities, vehicle routing) associated with the decision
problem. The problem can then be partitioned into a DC location sub-problem,
a customer-to-DC allocation sub-problem, and a transportation or route design
sub-problem. Second, the LRP has an inherent spatial dimension. Indeed, the
customers served by a company may cover a large territory, and logistics de-
cisions may be made on a national or sales region level instead of globally. In
this context, the problem can be partitioned into several regional sub-problems.
These dimensional views and the associated sub-problems are easily understand-
able by a decision-maker. Each regional sub-problem contains all decision types,
and each functional sub-problem contains decisions for all regions. Thus, they
both constitute a valid representation of the whole problem.
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The integrated view leads to the formulation of a ”complete” optimization
model to represent the decision problem. This model is generally difficult to
solve, but it will be used for various purposes. For each dimensional view, sub-
models are formulated to represent sub-problems. These formulations are usually
expressed in terms of partitions of complete model decision variable vectors and
parameter matrices. They may also be based on alternative modeling formalisms:
(e.g., a constraint programming sub-model can be defined even if the complete
optimization model is a MIP). A sub-model is useful if it can be solved effi-
ciently. It is usually the case if the sub-model: (1) corresponds to a generic class
of decision models studied in depth in the literature (e.g., bin packing, facility
location); (2) can be solved to optimality using generic LP-MIP solvers, or dy-
namic programming, or simple enumeration (explicit or implicit); (3) isolates a
homogeneous group of binary/integer variables and their associated constraints.

Optimization Algorithms. Once the sub-models have been formulated,
optimization algorithms must be designed to solve them. In CAT, optimization
algorithms are implemented as a set of autonomous software agents. Solutions to
sub-models are recorded and subsequently used to build complete solutions. The
following guidelines are useful to select a solution method. (1) Develop greedy
heuristics to construct feasible solutions for profit maximizing or cost minimizing
sub-models. (2) When the sub-model has been studied in the literature, published
solution methods can be integrated into CAT. (3) Purely linear sub-models can
be solved using a LP-solver library. (4) Sub-models involving a homogeneous
group of binary/integer variables can usually be solved effectively with a local
search MH since it is rather straightforward to define a neighborhood in this
context. In the LRP context, some of the sub-models formulated and the solution
methods selected could be the following: a pure facility location sub-model solved
with a MIP solver such as CPLEX; a location-allocation sub-model solved with a
Lagrangean heuristic [23]; a vehicle routing sub-model solved with a tabu search
MH [24]; a regional LRP sub-model solved with a tabu search [25].

Integration Sub-models. Integration refers to combining the solutions of
the sub-models associated with one view into solutions to the full optimiza-
tion model. It is done by exactly/heuristically solving an integration sub-model.
Integration sub-models are restricted versions of the full optimization model
obtained by fixing the value of several decision variables. The fixed values are
provided by the solutions to the dimensional sub-models. By solving the integra-
tion sub-model, the optimal value of the non-fixed decision variables is found,
and a solution to the complete model is produced. We refer to the set of decision
variables to optimize in an integration sub-model as integration variables. Inte-
gration variables not present in any dimensional sub-model are linking variables,
and those present in various dimensional sub-models are overlapping variables.

Integration is also used as a search strategy. For a specific dimensional view,
the choices of integration variables lead to different integration sub-models.
When the dimensional sub-models solutions are mutually exclusive, the integra-
tion sub-model contains only linking variables, and optimizing these variables
provides a feasible solution for the complete model. When the dimensional sub-
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models solutions are overlapping, a merging integration sub-model is obtained.
Since it is unlikely that the overlapping variables have the same value in all
partial solutions, the integration sub-model must find the optimal value of these
variables. The search space created by a merging sub-model can be enhanced by
including more than one partial solution from a given dimensional sub-model.
This adds all the variables from that sub-model to the set of overlapping vari-
ables. If the resulting integration sub-model is difficult to solve, one can constrain
the integration sub-model by fixing the values of the overlapping variables that
are identical in all partial solutions or restricting the values of the overlapping
variables to those found in the partial solutions, resulting in a smaller model.

Depending on the partial solutions chosen for integration, the resulting sub-
model may be infeasible. When it occurs, an alternative integration sub-model
that seeks to find a feasible solution while keeping most of the partial solutions’
characteristics is used. In these sub-model’s, the original objective function is
replaced with the minimization of the number (or amplitude) of decision variable
changes when compared with the values found in the sub-problems.

To conclude our LRP example, using the pure location sub-model and the
vehicle routing sub-model solutions, one would formulate a merging integration
sub-model as follows. The depot location decision variables are fixed using the
solution to the pure min-cost location sub-model. Several vehicle routing sub-
model solutions are also considered. The resulting integration sub-model selects
a set of feasible routes among the routes provided by the vehicle routing sub-
models. It is a capacitated set partitioning model for which many methods exist.

3.2 CAT System Structure

The structure of the CAT system incorporates a blackboard, utility agents and
optimization agents. The blackboard acts as a memory and a hub for communica-
tions, and it is the repository of all solutions (to the complete optimization model
and to all sub-models). Agents communicate solely through the blackboard. New
complete or partial solutions are placed on the blackboard and existing solutions
are retrieved when necessary. Utility agents provide functionalities required by
all agents, such as building mathematical model files for solvers, formatting in-
stance data, and compiling solution statistics. The optimization agents are the
most important: (1) construction agents create new solutions from scratch; (2)
improvement agents take existing solutions and try to improve them; (3) de-
struction agents remove unwanted solutions from the repository; (4) integration
agents combine high-quality solutions from various dimensional sub-models into
solutions to the complete optimization model. These agent roles are now defined.

3.3 Agent Jobs Descriptions

As pointed out by earlier works [20, 26], a few key questions must be answered
when designing a multi-agent optimization system. How many agents should be
used? What should their role be? How should they decide when to act, what
to act on, and how to act? For all their advantages, agent teams are complex
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to design and implement. Indeed, if the system uses several algorithms that are
similar in nature (e.g., simulated annealing variants) on the same sub-model,
it is likely that one of the optimization algorithms (usually the best) will be
largely responsible for the team’s performance. Also, on a computer with lim-
ited resources (memory or processor power), it is likely that adding agents will
deteriorate performances. To avoid these pitfalls, it is advised in [18] to start
with a small number of agents, and to add new agents with different skills as
needed. According to the literature and to our experience in developing CAT
systems, an agent team needs four important basic skills. (1) Quickly obtain fea-
sible solutions to the complete optimization model. Although these may not be
of high quality, they provide a basis for other agents to work upon. (2) Improve
existing solutions. This can be done at the complete model level or agents can
work on specific parts of the problem. (3) Remove unwanted or poor solutions
from the population to control its size. (4) Efficiently combine features from
solutions originating from different methods or dimensions. The nature of these
skills is now discussed.

Construction agents. Feasible solutions can be obtained quickly with sim-
ple heuristics (e.g., greedy or hill-climbing algorithms, or even randomly) for
several classes of optimization models. Another option is to use generic LP/MIP
heuristics (e.g., feasibility pump [27]). This approach tends to produce solutions
that are very different from those obtained with greedy methods. The key goals
at this task are speed and diversity, rather than solution quality. Using various
methods usually results in a more diverse initial population of solutions, yielding
a higher potential for improvement and collaboration, and reducing the need for
specific diversification strategies. If the complete optimization model is difficult
to solve but it is easy to find a feasible solution, one can generate solutions to the
complete model then infer initial solutions for sub-models from these solutions,
thus reducing the number of algorithms and agents needed for this role.

Improvement agents. For complex decision problems, it is recommended
to work on sub-models and not on the complete model. Since defining a neigh-
borhood (or a set of neighborhoods covering the complete model’s range of vari-
ables) may be challenging, local search is difficult to use. Evolutionary computing
provides generic crossover operators, but solution encoding is complex and on
highly constrained problems, developing effective repair functions may be prob-
lematic. To design a good set of improvement agents, the solution methods used
to solve sub-models must be carefully selected. If the sub-model is a LP, exist-
ing LP-solvers can be used. If it has only one type of binary/integer variable
(allowing for the construction of neighborhoods), a local search MH can be de-
veloped. If it is a variant of a well-known problem, the best available method
can be implemented. It may also be worthy to investigate alternative sub-model
reformulations. Many strategies can tackle complex sub-models (e.g., an initial
solution obtained with a simple heuristic may give a hot-start for a MIP-solver).
Nowadays, commercial solvers incorporate several generic MIP heuristics [28].
When MHs are not efficient, generic MIP heuristics often are. In [29], a review
of heuristics based on mathematical programming is provided. To ensure that
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the system continuously works on each sub-model (or, at least, looks for op-
portunities to work on it), a dedicated agent should be assigned to its solution.
The creation of ”super-agents” performing several tasks should be avoided. Such
super-agents tend to use too much resource and require complex scheduling rules.

Destruction agents. Solution destruction is as important as solution cre-
ation in agent-based optimization [18]. In some situations, the choice of solutions
to destroy is obvious, such as when duplicates exist in the population. Aside from
maintaining some control on the size of the population, destruction serves two
purposes: removing poor quality solutions and maintaining diversity in terms
of solution characteristics. At the beginning of the search, the solutions in the
population are quite diverse. As improvement agents work, the solution quality
of the best solutions in the population improves rapidly. At this stage, the de-
struction agent should focus on removing solutions that are of poor quality. A
simple rule such as choosing a solution at random from those in the 4th quartile
in terms of solution quality is appropriate. However, as the overall quality of
solution improves, newly created solutions tend not to be competitive in terms
of quality compared to those which have been improved by several agents. They
should have a chance to be improved before they are discarded. Furthermore,
as the population improves, working on the same solutions tends to accelerate
convergence. As the search progresses, a destruction agent shifts its focus from
removing poor solutions to either: (1) removing a random solution which has
been improved at least (I - 2) times and is in the bottom half in terms of per-
formance, where I (parameter) is the number of improvements made on the
solution that has been improved most frequently in the population; (2) finding
the two most similar solutions in the population, and destroying the worst one;
(3) finding the solution which has been used the most frequently to create new
solutions among the solutions in the 4th quartile in terms quality, and destroying
it. These rules can be encapsulated in destruction agents, and they work equally
well on a population of complete solutions or on a population of partial solutions
(solutions to a specific sub-problem). The metrics necessary to implement them
are detailed in Subsection 3.4. Alternatively, some solutions can be ”protected”
and be immune to deletion for a certain amount of time. These solutions may
be the status quo or solutions provided by a decision-maker.

Integration agents. Although the destruction agent works toward main-
taining variety, additional diversification strategies may be needed. It is possible
to add an agent whose sole objective is to provide the population with radically
different solutions than those currently in the population. This agent should
maintain a record of what has been proposed in the past, so it does not produce
solutions similar to those already removed from the population due to poor solu-
tion quality. The integration of partial solutions from sub-models into complete
solutions is a key component of an efficient agent team. At least one optimiza-
tion algorithm should be provided for each integration sub-model. If two methods
are available, they can both be used if they generate different high quality solu-
tions. The number of agents to use depends on the relative speed at which the
improvement agents generate new solutions to sub-models and the amount of
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computation effort required to solve the integration sub-models. Integration can
be used in flexible ways. Integration of solutions to sub-models from different
dimensional views can be desirable, as long as the resulting merging integration
sub-models are not too difficult to solve. Solving these models often requires
the design of specific heuristics or the use of a generic approach (see above).
These heuristics are easily implemented using a MIP solver such as CPLEX or
Gurobi. This approach is in line with scatter search and path-relinking MHs, and
is an effective way of reaping the most benefits from using multiple dimensional
views. As this type of integration is slightly different from the type of integration
sub-models required to assemble complete solutions from partial solutions, these
sub-models should be assigned to a different integration agent.

3.4 Decision Rules and Metrics: Solution Ancestry and Similarity

An agent needs formal rules to determine which solution to work on. A trivial
option is to select a random solution from the population, but this does not give
very good results. Obviously, an agent does not want to select a solution that it
has recently worked on. A simple yet effective decision rule is that the agent waits
that at least three others agents have improved the solution before attempting
to work on it again. Some improvement agents such as local search MHs may
want to push that rule a little further: since a local search explores thoroughly a
restricted portion of the search space, an agent may want to select a solution that
is significantly different from the one it just worked on. For more sophisticated
decision rules, metrics can be computed as follows. Agents need an effective
way to determine which solutions they recently worked on. In a cooperative
context, this information should be accessible to all agents. A simple metric to
achieve this objective is solution’s ancestry. Simply put, a solution’s ancestry
is its genealogical tree. Each solution keeps track of the solutions used for its
creation, or as a basis for its improvement, and the agents that worked on it. An
improvement agent can then use this information to determine if it has worked on
a solution recently, or on any of its parents. Tied to each solution is a list of agents
that have worked on it, and whether this attempt at improving it succeeded.
This list is sorted in reverse order. A similar mechanism is used to determine
whether a solution has transmitted its characteristics to other solutions in the
population. Anytime a solution is used to create a new solution or to alter an
existing solution, its characteristics are propagated through the population. The
new solution is linked to its parent solution(s) through an acyclic directed graph
structure, so that it is easy to find all the parents or all offspring of a given
solution. A propagation index is calculated for each solution, which is set to 0
when the solution is created. When a new solution s0 is created, if it has one or
more parent solutions, it parses its solutions digraph and updates the values of
its parents’ propagation index in a recursive manner.

There are occasions when an agent wishes to find similar, or very different,
solutions in the population. A well-known metric to do this is the Hamming
distance, which is the number of binary variables with different values in two
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solutions. Although it is useful in some contexts, that measure can be mislead-
ing for mixed-integer linear models. In most decision problems, some decisions
have more importance than others. Often, a group of binary or integer variables
is larger but of less significance. In the LRP, many more decision variables are
associated with the vehicle routing decisions than the location decisions, despite
the fact that location decisions have a more lasting impact on the quality of
the solution. For this problem, two solutions could have the exact same depot
locations but have a high Hamming distance, which would not reflect the im-
portance of location decisions adequately. In order to obtain a more accurate
distance metric, one can measure the percentage of variables of each type that
have the same value. Different types of variables can even be weighted in order
to account for their relative importance.

4 Conclusion

This paper gives a generic methodology and implementation guidelines to model
and solve complex real-world decision problems. It shows how to look at decision
problems from different point-of-views, and how to partition the problem as well
as the associated optimization method into dimensional sub-models. We propose
a general formulation of CAT, a new agent-based solution method designed
to benefit from the complexity reductions resulting from the multi-dimensional
views of the problem. CAT is scalable since its execution can easily be distributed
over multiple computers. CAT is easily extendable by adding new agents or
processing power as needed or by allowing some of the agents to work using
more than one processor at a time.

References

1. Murthy, S., Akkiraju, R., Goodwin, R., Keskinocak, P., Rachlin, J., Wu, F.: Co-
operative Multiobjective Decision Support for the Paper Industry. Interfaces 29
(5) (1999) 5 – 30

2. Carle, M.A., Martel, A., Zufferey, N.: The CAT metaheuristic for the solution of
multi-period activity-based supply chain network design problems. International
Journal of Production Economics 139 (2) (2012) 664 – 677

3. Silver, E., Zufferey, N.: Inventory control of an item with a probabilistic replen-
ishment lead time and a known supplier shutdown period. International Journal
of Production Research 49 (2011) 923–947

4. Hertz, A., Schindl, D., Zufferey, N.: Lower bounding and tabu search procedures
for the frequency assignment problem with polarization constraints. 4OR 3 (2)
(2005) 139 – 161

5. Zufferey, N.: Heuristiques pour les Problèmes de la Coloration des Sommets d’un
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Abstract. Variable neighborhood search (VNS) is a well-known meta-
heuristic. Two main ingredients are needed for its design: a collection
M = (N1, . . . , Nr) of neighborhood structures and a local search LS (of-
ten using its own single neighborhood L). M has a diversification purpose
(search for unexplored zones of the solution space S), whereas LS plays
an intensification role (focus on the most promising parts of S). Usually,
the used set M of neighborhood structures relies on the same type of
modification (e.g., change the value of i components of the decision vari-
able vector, where i is a parameter) and they are built in a nested way
(i.e., Ni is included in Ni+1). The more difficult it is to escape from the
currently explored zone of S, the larger is i, and the more capability has
the search process to visit regions of S which are distant (in terms of
solution structure) from the incumbent solution. M is usually designed
independently from L. In this paper, we depart from this classical VNS
framework and discuss an extension, Collaborative Variable Neighbor-
hood Search (CVNS), where the design of M and L is performed in a
collaborative fashion (in contrast with nested and independent), and can
rely on various and complementary types of modifications (in contrast
with a common type with different amplitudes).

Keywords: Metaheuristics; Variable Neighborhood Search.

1 Introduction

As depicted in [1], modern methods for solving complex optimization problems
are often divided into exact methods (e.g., dynamic programming, branch and
bound) and metaheuristics [2]. An optimal solution can always be found with
an exact method in a finite amount of time. Unfortunately, most real-life opti-
mization problems are NP-hard, and therefore, exact methods would require too
much computing time to find an optimal solution. For such difficult problems, it
is thus better to quickly find a satisfying solution. A streamline heuristic can be
used if solution quality is not a crucial issue. Otherwise, a more advanced meta-
heuristic is recommended. There are mainly two classes of metaheuristics: local
search and population based methods. The former algorithms work iteratively on
a single solution (e.g., descent local search, tabu search, variable neighborhood
search), whereas the latter manage a set of solutions (e.g., genetic algorithms,
ant colonies, adaptive memory algorithms).
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A local search starts from an initial solution. Next, in each iteration, a neigh-
bor solution s′ is generated from the current solution s by performing a move
on s (i.e., the structure of s is slightly modified to get s′, according to predefined
rules). In tabu search, to try to avoid cycling (i.e., coming back to an already
visited solution), a tabu list forbids to perform the reverse of recently performed
moves. The best non-tabu move is generally performed in each iteration. In most
local search algorithms, only one neighborhood structure is used (i.e., a solution
can only be modified according to a dedicated technique with a fixed amplitude,
like changing one component of the solution). In contrast, Variable Neighbor-
hood Search (VNS) [3] uses sequentially different neighborhood structures. A
generic version of VNS is given in Algorithm 1, where N1, N2, . . . , Nr denote a
finite set of neighborhoods, Ni(s) is the set of solutions in the ith neighborhood
of solution s, and L is the neighborhood structure used in the local search LS.
In a classical VNS, the neighborhood structures N1, . . . , Nr actually rely on the
same type of move, but used with different amplitudes. For example, if a solu-
tion s is a vector, Ni consists in changing the value of i components of s. The
resulting collection M of neighborhood structures are thus dependent (i.e., they
rely on the same type of modification) and nested (i.e., Ni is included in Ni+1).

Algorithm 1 Variable Neighborhood Search (VNS)

Generate an initial solution s and set i = 1

While no stopping criterion is met, do

1. Shaking (diversification): generate a neighbor solution s′ in Ni(s).
2. Local search (intensification): apply some local search method (with neighborhood

L) with s′ as initial solution, and let s′′ be the returned solution.
3. Relocate the search: if s′′ improves s, move there (set s = s′′), and continue the

search with N1 (set i = 1); otherwise set i = i + 1, but if i > r, set i = r.

In this paper, starting from such a VNS framework, we discuss how the de-
sign of the neighborhood structures N1, . . . , Nr and L can be enhanced in order
to be performed in a collaborative and integrated fashion (note that integrated
collaboration also appears in some ant algorithms [4], but within a different
framework). The resulting VNS is called CVNS (for Collaborative VNS). In
contrast with the standard literature on VNS, depending on the involved prob-
lem structure, the following features can appear in CVNS: (A) a strategic use
of destroying neighborhood structures in M (i.e., moves which eliminate some
pieces of the solution); (B) the use of a central memory Mem containing all the
local minima encountered during the search, which is employed to design the
stopping condition of LS. On the one hand, feature (A) allows for the joint ac-
tion of moves of different types, resulting in a collaborative solution improvement
process. On the other hand, feature (B) offers a way to collaboratively improve
the performance of LS thanks to the sharing of information at a global level.

15 sciencesconf.org:bioma2018:167880



In this contribution, we discuss the use of such features, and the performance
of CVNS is highlighted with the use of three problems belonging to different
fields: (1) job scheduling with time-window penalties (Section 2 relying on [5]);
(2) nonlinear global optimization (Section 3 relying on [6]); (3) network design
(Section 4 relying on [7]). Only a baseline study is given for each problem, and
the reader is referred to the above three references to have more detailed infor-
mation on the complexity issues, the literature review, the parameter setting,
and a finer-grained presentation of the experiments, including the experimental
conditions like the computer type, the programming language, etc. The main
numerical results are highlighted in this work, which allows to observe the good
performance of CVNS. A conclusion is provided in Section 5. For recent VNS
variants, the reader is referred to [8–10].

2 Job scheduling with time-window penalties

2.1 Presentation of the Problem (P)

Make-to-order production systems are relevant to face the customized products
requested at the clients level [11]. The associated just-in-time paradigm appears
as a relevant approach to reduce the inventory costs. In such a context and
because of the limited production capacity, scheduling jobs at the plant level
can result in rejecting some orders [12]. Surprisingly, the literature on order
acceptance problems involving earliness or tardiness penalties is limited [13, 14].
Let (P) denote the considered NP-hard single-machine scheduling problem. It
has the following features: sequence-dependent setup times and costs, earliness
and tardiness penalties, and rejection penalties associated with the rejected jobs.

(P) can be presented as follows [15]. n jobs can be performed on a single
machine, but two jobs cannot be processed concurrently. With each job j, the
following information is associated: a due date dj , a deadline d̄j , a rejection
penalty uj , an available date r̄j , a release date rj , and a processing time pj .
Let Sj (resp. Cj) denote the starting time (resp. completion time) of job j.
The following constraints are imposed for each job j: Sj ≥ r̄j and Cj ≤ d̄j . If
an accepted job j is not fully performed in time-window [rj , dj ], a penalty is
encountered: if Sj < rj (resp. Cj > dj), an earliness (resp. tardiness) penalty
Ej(Sj) (resp. Tj(Cj)) is paid, where Ej(·) (resp. Tj(·)) is a non-increasing (resp.
non-decreasing) function. In addition, a setup time (resp. cost) sjj′ (resp. cjj′ ) is
encountered if two jobs j and j′ of different families are consecutively performed.
Idle times are allowed (indeed, they can have a positive impact on the earliness
penalties), but preemptions are forbidden. Let σ(s) (resp. Ω(s)) be the sequence
(resp. set) of accepted (resp. rejected) jobs associated with solution s. In order to
measure the earliness/tardiness penalties of any solution s, it is necessary to first
determine a starting time for each job of σ(s). This is performed with a timing
procedure [15] (this task is complex as idle times are allowed). The objective
function to minimize is f(s) =

∑
j∈σ(s)

[
Ej(Sj) + Tj(Cj) + cps(j)j

]
+

∑
j∈Ω(s) uj ,

where ps(j) is the predecessor of job j in σ(s) (the predecessor of the first job is
a dummy job representing the initial state of the machine).
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2.2 CVNS for (P)

VNS has been applied to single-machine scheduling problems with different pro-
duction environments [16]. When it is forbidden rejecting jobs, the neighborhood
structures often consist in slightly changing the production sequence with move
REINSERT or with move SWAP (as defined below). The strategic use of the move
DROP (consisting in rejecting some jobs) is proposed in CVNS for (P).

Two methods are proposed for (P) in [15]: GR (a greedy heuristic) and TS
(a tabu search using GR to generate an initial solution). GR consists in two
phases: (1) sort the jobs by increasing slack times (d̄j − r̄j −pj); (2) sequentially
insert the jobs in the solution s under consideration, at the position minimizing
the augmentation of the costs (but a job is rejected if it is cheaper than to do
it). Four types of moves are used in TS in order to modify the current solution
s: ADD moves a job from Ω(s) to σ(s); DROP moves a job from σ(s) to Ω(s);
REINSERT reschedules one job in σ(s); SWAP exchanges the positions of two
jobs in σ(s). If a move leads to an unfeasible solution s′ (as available dates
or deadlines are not respected), s′ is immediately repaired as follows: while s′

remains unfeasible, the job whose rejection leads to the smallest cost is removed
(and the starting/ending times are also updated with the timing procedure).
Four tabu structures were employed after applying a move on solution s. The
first forbids adding a dropped job for τ1 (parameter) iterations. The second
forbids dropping an added job for τ2 iterations. The third forbids (during τ3

iterations) moving again a job that has been swapped, reinserted or added. If j
has been reinserted or swapped, the fourth tabu status forbids moving a job j
between its two previous neighboring jobs (in σ(s)) for τ4 iterations.

In CVNS for (P), the initial solution is also generated by GR. The way to
switch from one neighborhood to another differs from the standard Algorithm
1. Ni(s) consists in randomly dropping i% of the jobs from σ(s) to Ω(s). Such
a move DROP is used here to diversify the search. Parameter i is managed in
order to focus the search away from the current solution when no improvement
has been made for a long period. More precisely, the proportion of removed
jobs grows exponentially with the number of iterations without improvement. In
step (1) of Algorithm 1, the selected solution is the best among k (parameter)
solutions generated randomly in Ni(s). In step (2) of Algorithm 1, the above
presented TS is applied for I (parameter) iterations, but without move DROP

(as it appears in the shaking process).

2.3 Results

The uniform distribution was used to generate all the data. Two values are
important for generating instances for (P): the number n of jobs, and a parameter
α impacting the time interval within which release dates and due dates are
generated. Formally, a value Start is selected large enough, and End is computed
as Start + α

∑
j pj. Next, each rj (resp. dj) is randomly chosen in [Start, End]

(resp. [rj + pj, End]). Linear and quadratic penalties are investigated. More
precisely, the earliness (resp. tardiness) penalties are computed as wj(rj − Sj)

qj
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(resp. w′
j(Cj−dj)

q′
j ). The weights wj and w′

j are randomly picked in {1, 2, 3, 4, 5},
whereas qj and q′

j are selected in {1, 2}. pj is an integer randomly generated in
[50, 100], and uj = βj · pj , where βj is an integer randomly picked in interval
[50, 200]. d̄j and r̄j are generated such that Tj(d̄j) = Ej(r̄j) = uj. The number
of job families is chosen randomly in [10, 20]. Finally, setup costs and setup times
are related (as in practice): the setup time sFF ′ between jobs of families F and
F ′ is selected randomly in [50, 200], and the corresponding setup cost cFF ′ is
computed as ⌊γ · sFF ′⌋, where γ is randomly chosen in interval [0.5, 2].

The quick timing procedure proposed in [17] was adapted to evaluate a so-
lution in TS and CVNS. GR, TS and CVNS were tested with a time limit T (n)
depending on n. As GR is quick, it is restarted as long as T is not reached, and
it finally returns the best generated solution among the restarts. Table 1 sum-
marizes the results. Column ”Best-known” indicates the best-known objective
function value for each instance (in $). Next, for each method, the percentage
gap between the average result (over 10 runs) and ”Best-known” is given. Both
local search approaches are better than GR, and CVNS outperforms TS. Indeed,
CVNS obtains the best results for 11 instances out of 15, versus 5 for TS. In
other words, a strategic use of move DROP appears to be a powerful exploration
tool: the ingredients added to TS to derive CVNS are thus efficient.

Table 1. Results for a job scheduling problem

n α Best-known [$] GR [% gap] TS [% gap] CVNS [% gap]
25 0.5 46,860 0.4 0.13 0.05

1 35,866 6.5 0 0
2 8,172 21.25 0.75 1.33

50 0.5 137,567 6.47 4.26 2.32
1 69,671 44.34 10.15 11.26
2 6,123 166.39 30.91 19.52

75 0.5 198,633 19.68 6.52 6.06
1 126,052 33.93 5.15 0.6
2 11,199 246.3 41.58 32.86

100 0.5 332,731 21.32 8.36 6.63
1 175,237 50.36 25.65 4.6
2 20,459 124.39 39.34 17.98

150 0.5 561,422 23.49 3.92 4.8
1 320,225 53.85 11.76 15.6
2 66,585 16.34 63.2 9.59

Average 55.67 16.78 8.88

3 Nonlinear global optimization

3.1 Presentation of the Problem (P)

Problem (P) consists in finding a global minimum of the nonlinear optimization
problem minx∈Rn f(x), where function f : Rn → R is twice differentiable, but
has no special structure. Most of the literature on nonlinear optimization [18–
21] is usually dedicated on the global convergence of algorithms toward a local
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optimum, with a fast local convergence. A point x⋆ is a global (resp. local)
minimum of f if f(x⋆) ≤ f(x) for all x ∈ Rn (resp. if there exists ε > 0 such
that f(x⋆) ≤ f(x) for each x such that ‖x − x⋆‖ ≤ ε). An algorithm is globally
(resp. locally) convergent if it converges to a (local) minimum from any starting
point (resp. when it is converging to a (local) minimum when the starting point
x1 is in a given neighborhood of x⋆).

3.2 CVNS for (P)

The employed local search LS is able to prematurely stop its search if the iterates
are converging to an already identified local minimum or if they are reaching an
area of the solution space where no important improvement can be expected. LS
relies on a trust region framework [20]. It is interrupted if one of the following
conditions is verified: (1) a maximum number of iterations is reached; (2) LS
has converged to a local minimum up to the desired precision; (3) LS seems to
converge to an already identified local minimum; (4) the gradient norm is not
large enough when the objective function value is far from the value at the best
iterate; (5) a significant improvement of the objective function is not encoun-
tered. An efficient use of available information on f can strongly impact the
design of the neighborhood structures. It was proposed to analyze the curvature
of f at x based on the analysis of the eigenstructure of the Hessian matrix H ,
the approximation of the second derivatives matrix of f at x.

The main loop of CVNS is designed as follows. Let x be the current solution
(which is the best visited solution, as in any classical VNS approach). Five
neighborhood structures N1, . . . , N5 are used (from the smallest N1 to the largest
N5), and each time a neighborhood structure Nk is used, p candidates x1, . . . , xp

(parameter tuned to 5) are generated in it and then improved with LS. If the
five so performed LS have been prematurely stopped, a quick option consists
in restarting the process with Nk+1. Otherwise (i.e., at least one local search
application converged to a local minimum), the list Mem of local minima is
updated. If the best local minimum of Mem is better (resp. not better) than x,
the process is restarted with N1 (resp. Nk+1), which represents a success (resp.
a failure). The overall algorithm stops if N5 has failed.

3.3 Results

CVNS was performed 100 times for each instance, and a run is successful if
CVNS finds a global minimum. Two measures of performance are considered:
the average percentage of success and the average number of function evaluations
among the successful runs. This second criterion is very important when it is
computationally cumbersome to evaluate a solution [22]. CVNS is compared
with the following methods: (1) Direct Search Simulated Annealing (DSSA)
[23]; (2) Continuous Hybrid Algorithm (CHA) [24]; (3) Simulated Annealing
Heuristic Pattern Search (SAHPS) [25]; (4) Directed Tabu Search (DTS) [26].
Table 2 provides the number of successes over the 100 runs for 25 problems (left
information), and the average number of function evaluations for successful runs
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on the same 25 problems (right information). Some of the cells associated with
competitors are empty if the corresponding information was not available. First,
CVNS appears to be the most robust method as it gets a success rate of 100% for
almost all instances. Second, CVNS has the lowest average number of function
evaluations for most instances. Interestingly, the efficiency of CVNS on Zakharov
(Zn) and Rosenbrock (Rn) functions is improving when the dimension n of the
problem augments from 2 to 10. CVNS is also able to significantly reduce the
average number of f -evaluations for instances R10 and Z10.

Table 2. Results for nonlinear global optimization

Problem CVNS CHA DSSA DTS SAHPS
RC 100 153 100 295 100 118 100 212 100 318
ES 100 167 100 952 93 1442 82 223 96 432
RT 84 246 100 132 100 252 100 346
SH 78 366 100 345 94 457 92 274 86 450
DJ 100 104 100 371 100 273 100 446 100 398
HM 100 335 100 225
GR6 100 807 90 1830
CV 100 854 100 1592
DX 100 2148 100 6941
Z2 100 251 100 215 100 186 100 201 100 276
Z5 100 837 100 950 100 914 100 1003 100 716
Z10 100 1705 100 4291 100 12501 100 4032 100 2284
Z50 100 17932 100 75520 0 177125
H3,4 100 249 100 492 100 572 100 438 95 517
H6,4 100 735 100 930 92 1737 83 1787 72 997
S4,5 100 583 85 698 81 993 75 819 48 1073
S4,7 100 596 85 620 84 932 65 812 57 1059
S4,10 100 590 85 635 77 992 52 828 48 1035
R2 100 556 100 459 100 306 100 254 100 357
R5 100 1120 100 3290 100 2685 85 1684 91 1104
R10 100 2363 83 14563 100 16785 85 9037 87 4603
R50 100 11934 79 55356 100 510505
R100 100 30165 72 124302 0 3202879

4 Network Design

4.1 Presentation of the Problem (P)

In the context of large-scale production-distribution networks, the considered
problem (P) is an extension of the two-echelon multicommodity CFLPSS (ca-
pacitated facility location problem with single sourcing) with alternative facil-
ity configurations, direct shipments from manufacturing facilities, and inventory
holding costs. The design of a supply chain network implies strategic decisions
for: (1) opening/closing production and distribution centers; (2) reconfiguring
some of these centers; (3) specifying their mission according to (a) the products
they have to produce or stock and (b) the customers they should deliver. The
related recent literature, usually on simpler problems, includes [27–30].

Consider a network made of sites for potential PDCs (production-distribution
centers) u ∈ U and DCs (distribution centers) w ∈ W . They represent locations
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where a facility could be opened, or alternatively, existing facilities. The plants
are able to manufacture a set of finished products p ∈ P . A product is actually a
group of items needing the same type of production capacity. For each p, it may
be possible to produce it only on a subset of sites Up ⊆ U . The facilities have
to deliver external demand zones (group of ship-to-points located in a specified
geographical area) d ∈ D. Only a subset Pd ⊆ P of products might be requested
from a demand zone d. Finished products can be stocked in the PDCs, for
which the mission consists in supplying the DCs and some demand zones (direct
shipments). Each demand zone has to be delivered by a single source (either a
PDC or a DC). In addition, in order to satisfy some predefined service criteria
(e.g., next day delivery), a facility s ∈ S could deliver only a subset of demand
zones Ds ⊆ D or, conversely, only a subset Sd ⊆ S = U ∪ W of the sites are
positioned to supply a given demand zone d ∈ D.

The production/storage capacity and the fixed/variable costs characterize
the configuration of each existing facility. Alternative configurations can be im-
plemented for each potential site, corresponding to: (a) the addition of new space
and/or equipment to augment its capacity; (b) a re-engineering of current equip-
ments/layouts; (c) other facility specifications for the new sites. Therefore, a set
Js of possible configurations can be implemented for each site s ∈ S of the poten-
tial network. For the considered planning horizon, each configuration j ∈ Js is
characterized by the following information: a production capacity, a flexible stor-
age capacity, a fixed exploitation cost, and a variable throughput cost (covering
the relevant procurement/reception/production/handling/shipping expenses). The
objective function to minimize is the sum of the following costs: configuration
costs for the facilities (fixed + variable), inventory holding costs, and trans-
portation costs. The constraints to satisfy are: the capacity constraints, the flow
equilibrium in each node of the network, and the clients’ demand satisfaction.

4.2 CVNS for (P)

First, note that only feasible solutions are generated. The following options are
considered when performing a move: (1) each demand from zones d ∈ D is
supplied by any of the open center s ∈ Sd while respecting the service criteria; (2)
the capacity constraints (i.e., minimum and maximum) of the used configurations
are all satisfied; (3) if there is a demand from a zone d which can only be supplied
from a single center (i.e., if |Sd| = 1), then the center is always set as open during
the search process. Moreover, if for each p ∈ Pd, the demand xpd from a zone
d ∈ Dw is reassigned to a DC w ∈ W , then a new requirement (equal to xpd) is
created for the opened PDCs that can ship product p to DC w. The same kind of
additional requirements can be designed when an existing PDC is closed. In both
cases, the requirements induced at the first echelon are assigned to the second
echelon center u with the lowest production and transportation cost, given that
a configuration j with sufficient capacity can be employed. If there is not enough
capacity, the outstanding requirement is attributed to the next best plant. This
implies that the DCs can be delivered by various plants.
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Let W (v) ⊆ W (resp. U(v) ⊆ U) be the subset of opened DCs (resp. PDCs)
associated with solution v. In other words, a pair (W (v), U(v)) characterizes
each solution v. In the shaking phase of CVNS, the best neighbor solution is
chosen, and the stopping condition is a time limit. Five neighborhood structures
are used, denoted as N1 to N5. (1) v′ ∈ N1(v) if a PDC is closed but another
is opened. (2) v′ ∈ N2(v) if an additional PDC is opened. (3) v′ ∈ N3(v) if a
PDC is closed. (4) v′ ∈ N4(v) if an additional DC is opened. (5) v′ ∈ N5(v) if a
DC is closed. As the number of potential DCs is usually far above the number
of PDCs, it is appropriate to test many possibilities for W (v). Therefore, the
W -shift moves (i.e., a DC is closed but another is opened) will be employed
within the local search LS of CVNS.

Two important points related to the design of the above neighborhood struc-
tures should be raised: (1) which demand zones should be attributed to a center
that is newly available (this is identified with add/shift moves); (2) to which
centers must the demands of a closed center (identified with a drop-move or
a shift-move) be reassigned? In both cases, the involved costs are the configu-
ration/transportation/production/inventory costs. In order to tackle issue (2),
suppose that center s′ has to be opened. It is appropriate to assign demand zone
d ∈ Ds′ to s′ instead of its current supplier s if the sum of the costs is decreased,
and if the minimum capacity constraint remains satisfied for s. It was however
observed that such a reassignment of demands often leads to an infeasible so-
lution s′ according to its minimum capacity constraint. To repair it, additional
clients are given to s′ as follows. While the minimum capacity constraint of s′ is
violated, a demand zone d ∈ Ds′ that is not already delivered by s′ is randomly
chosen. If there exists an assignment (s′′, d) (involving an already open s′′) that
leads to a solution with superior costs than the assignment (s′, d), then d is as-
signed to s′. If such an assignment does not exist, s′ cannot be opened. Issue (1)
is tackled as follows. For each demand zone d associated with the investigated
center to be closed, d is simply reassigned to the best (according to the costs)
possible open center sb. In the two cases, the tightest center configuration is
chosen (i.e., the feasible capacity configuration with the smallest fixed cost).

Let v denote the current solution. The five neighborhood structures are used
as follows, starting with M = {N1, . . . , N5}. In the shaking phase of Algorithm
1, instead of initially choosing i = 1, i is randomly picked in {1, 2, . . . , 5}, and
the best solution v′ in Ni(v) is chosen. LS is then applied on v′ to get v′′. Next,
if v′′ outperforms v, M is set to {N1, . . . , N5} and v is updated (i.e., set v = v′′).
Otherwise: if |M | > 1, Ni is removed from M ; but if |M | = 1, M is set back
to {N1, . . . , N5}. The next neighborhood structure in the shaking phase is then
randomly chosen in M .

The employed LS is a tabu search using the W -shift moves (w, w′) such that
w and w′ can supply common demand zones. When a W -shift move (w, w′) is
performed, it is then forbidden to close (resp. open) w′ (resp. w) for a certain
number of iterations. LS is stopped when a maximum number I of iterations
without improving the best solution encountered so far is reached. Note that the
use of filtering techniques [31] might be very helpful to reduce the search space.
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4.3 Results

CVNS was tested on a 32-bit 2 GHz Dual Core computer with 1 GB of RAM.
An exact method relying on CPLEX was also developed. Random instances
with various sizes and cost structures were generated, based on realistic cases
documented in [32]. A uniform distribution is used to generate the demand
for the different demand zones, with lower/upper bounds based on the total
production capacity of the network. It was always assumed that demand zones
had to be delivered from facilities located at a distance up to 530 miles from its
centroid. Different sizes were obtained by modifying the potential PDCs (4 or 6,
with four possible configurations for each PDC), the potential DCs (60 or 100,
with two possible configurations for each DC), the demand zones (500 or 1000),
and the number of product families (3 or 20).

Average results (with computing times indicated in minutes) are summarized
in Table 3, depending on the instances characteristics. The percentage gaps of
CVNS are computed with respect to the optimal costs. The focus is put on four
components: the number |P | of products (3 or 20), the number |D| of demand
zones (500 or 1000), the number of centers (|U | = 4 or 6 PDCs, |W | = 60 or 100
DCs). Anytime a component is fixed, the three other components vary. One can
conclude that on average: (1) CPLEX requires 375 minutes to find an optimal
solution; (2) CVNS is able to find very competitive solutions (as the average gap
is 0.84%) in 13 minutes. Moreover, CVNS appears to be very efficient with a
large number of products (indeed, the average gap gets close to 0.30% in such
cases). Finally, CVNS is more competitive if more decision variables are involved,
which is a good indicator if larger instances have to be tackled.

Table 3. Results for a network design problem

CPLEX CVNS
Characteristics Opt. cost [$] Time Gap [%] Time

|D| = 500 demand zones 69,207,275 341.58 0.89 12.5
|D| = 1000 demand zones 134,420,183.3 409.17 0.79 14.17

|P | = 3 products 25,726,628.25 217.92 1.43 13.33
|P | = 20 products 177,900,830 532.83 0.26 13.33

(|U|, |W |) = (4, 60) centers 103,763,688.3 297 0.99 10
(|U|, |W |) = (6, 100) centers 99,863,769.92 453.75 0.7 16.67

5 Conclusion

The performance of a metaheuristic can be evaluated according to several criteria
[1]: (1) quality (value of the obtained results according to a given objective
function); (2) speed (time needed to get competitive results); (3) robustness
(sensitivity to variations in problem characteristics and data quality); (4) ease
of adaptation; (5) ability to take advantage of problem structure. The CVNS
methodology has a good overall behavior according to these criteria. Indeed, for
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the above presented applications, the solution encoding and the employed moves
account for the problem specific features. Next, CVNS is easy to adapt because
it only relies on two ingredients (which have to be designed in a collaborative
fashion): a local search LS and a collection M of neighborhood structures. In
addition, the strategic use of M plays a key role in robustness. The quickness
of LS leads to the quickness of CVNS (it is usually the case if an aggressive
method is used, such as tabu search). Finally, quality is ensured because of the
intensification capability of LS combined with the diversification ability of M .
Among the future works on CVNS, we can mention the integration of other
learning mechanisms [33] to better guide the search.
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ABSTRACT 

The standard hot-rolled sections are used to form the skeletal structural system in most of 

the steel structures. The steel manufacturers produce various hot-rolled shapes with different 

names depending on the country. The cross-section geometry of a member should be 

determined to provide structural material economy and construction ease. Even if the most 

appropriate hot-rolled section is selected for a member, a significant amount of structural 

material may be wasted. In this case, designing a built-up section with a better material 

distribution may provide a more economical solution compared to any hot-rolled standard 

shape. 

Since the requirements of an engineering problem can mostly be satisfied by more than 

one value sets for the variables, it is not wrong to say that most of the design problems have 

multiple solutions. The modern procedures accept the best possible solution as the final design, 

which directs the designer towards structural optimization. It should be reminded that the 

definition of the “best” word mostly interpreted as “lightest” in structural engineering. There 

are three structural optimization types as size, shape and topology. Size optimization is to seek 

the best design by taking the size of the structural members as the design variables. On the other 

hand, topology optimization deals with the best material distribution. One of the best definitions 

for the shape optimization concept, which is the main concern of the study, is searching the best 

locations for the nodes of the finite element mesh of a structure without changing the 

connectivity information. 

The research on the shape optimization of bars has a relatively long history compared to 

the other structural optimization problems. The works of Keller [1], Taylor [2] and Simitses et 

al. [3], which involve the shape optimization of columns, are the earlier studies in the field. As 

for the studies conducted on beam-columns in the last decade, Gil-Martín et al. presented the 

proportioning of steel beam-columns based on Reinforcement Sizing Diagrams (RSD) 

optimization methodology with code-based constraints [4]. Cheng et al. studied the optimum 

design of clamped beam-columns under the thermal load that maximizes the buckling 

temperature and the fundamental natural frequency of transverse vibrations [5]. Wang et al. 

presented the shape optimization of simply supported singly-symmetric cold-formed beams and 

beam-columns [6]. 

This study presents the performance of the Crow Search Algorithm (CSA) [7], which is 

one of the recently published metaheuristic algorithms, for the shape optimization of prismatic 

I-section beam-columns considering a set of structural and geometrical constraints. The CSA 

is inspired by the food seeking behavior of the crows. The crows try to steal each other’s food 

by following another random picked crow to its food-hiding place. If they realize that they are 

being followed, they lead the follower to another random place that is different than their food-
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hiding location [7]. The structure of the algorithm is simple. Two lists, which can be called as 

“position” and “memory” matrices, store the crow information. The former (position) is for the 

current position of the crows. The latter (memory) holds the best solutions that the crows have 

discovered throughout the optimization procedure. The candidate positions for the next iteration 

are calculated by a modest movement operator. Then, each crow moves to its candidate position 

if the solution represented by the new candidate position is feasible and the memory matrix is 

updated. The algorithm continues by repeating these steps until the stopping criteria have been 

met. 

The first structural constraint of the optimization process prevents the yielding of the 

material. The von Mises yield criterion is considered to determine the full elastic capacity of 

the bars. The transversal loads on a member produce both normal and shear stresses. However, 

the influence of the shear stress is small compared to the normal stress on the I-section members 

with large spans. With these assumptions, it becomes easy to determine the limiting von Mises 

stress occurred in the critical cross-section of the member. The second constraint controls the 

excessive deflections. It is well-known that the deflection curve of a member that is under axial 

load(s) and transverse bending cannot be determined by superposition. Fortunately, it is 

practical to utilize energy methods to obtain the approximate deflection curve of the member 

considering the axial load - transverse bending interaction. The third constraint deals with the 

global out-of-plane stability of the members. The first (critical) global buckling mode of a bar 

varies according to the structural material properties, section geometry and loading case. The 

compression members may buckle by deflecting laterally (flexural buckling), twisting 

(torsional buckling) or both (flexural-torsional buckling). On the other hand, there is a buckling 

mode for the bending members such as beams and beam-columns called lateral-torsional 

buckling where the transversally deformed bar finds another equilibrium state by twisting and 

deflecting laterally (Fig. 1). Note that this study uses the equation provided by Pi and Trahair 

[8,9] to calculate the buckling loads of the members. 

Fig. 1. A buckled beam-column a) Side view, b) m-m section 

In Fig. 1, � and � are the center of mass and shear center of the section, respectively. The 

conventional design rules recommend using relatively thick plates for the flanges and a thinner 

plate for the web to construct an efficient I-section. On the other hand, slender webs are highly 

prone to buckling and therefore, the plate that forms the web of a built-up I-section should have 
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adequate strength to prevent local instability. For this reason, a geometric limitations set, which 

does not belong to any specific design code, is considered in the study as the fourth constraint. 

The performance of the CSA for the shape optimization of the members under axial and 

transversal loads is demonstrated over beam-column design examples including simply-

supported and cantilever configurations. The weights of the near-optimal designs found by a 

number of consecutive runs for each problem are adequately close to each other. The 

differences between the best and the average/worst results are acceptable and the standard 

deviations of each solution set are sufficiently small. Considering these remarks, it can be said 

that the CSA performed well in the introduced optimization problem. Another important note 

on the results is that the design problems (both simply-supported and cantilever configurations) 

except a few cases were controlled by the deflection and buckling constraints. Since the shape 

optimization attempts mostly leaded to slender designs, the buckling constraints dominated the 

problem and the stress constraints were implicitly satisfied even for the low-grade steels. 

Keywords: I-section, beam-column, shape optimization, metaheuristics, crow search algorithm 
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Abstract. The amount of data available in time series is recently in-
creasing in an exponential way, making difficult time series preprocessing
and analysis. This paper adapts different methods for time series repre-
sentation, which are based on time series segmentation. Specifically, we
consider a particle swarm optimization algorithm (PSO) and its bare-
bones exploitation version (BBePSO). Moreover, a new variant of the
BBePSO algorithm is proposed, which takes into account the positions
of the particles throughout the generations, where those close in time
are given more importance. This methodology is referred to as weighted
BBePSO (WBBePSO). The solutions obtained by all the algorithms are
finally hybridised with a local search algorithm, combining simple seg-
mentation strategies (Top-Down and Bottom-Up). WBBePSO is tested
in 13 time series and compared against the rest of algorithms, showing
that it leads to the best results and obtains consistent representations.

Keywords: Time series representation, segmentation, barebones parti-
cle swarm optimization, hybrid algorithms

1 Introduction

Nowadays, the exponential increase of time series and their big amount of data
hamper their processing [1]. Time series data mining (TSDM) includes several
tasks such as the reconstruction of missing values [2], clustering [3], classification
[4], forecasting [5] or segmentation [6]. Different areas of application can signifi-
cantly benefit from efficient TSDM algorithms, including climate [7] or finances
[8], among others.

Time series segmentation consists in dividing the time series into consecutive
parts or points, trying to satisfy different objectives. There are two points of
view that time series segmentation is focused on. On the one hand, segmenting
time series is used for discovering patterns in them. On the other hand, there is
another objective when segmenting time series, which tries to reduce the number

? Corresponding author at: Email: i92duroa@uco.es; Tel.: +34 957 218 349; Fax: +34
957 218 630.

29 sciencesconf.org:bioma2018:178742



of points of the time series (i.e. its dimensionality). With respect to this second
objective, one of the main problems is the difficulty of processing and mining
large time series, their dimensionality making them very difficult to analyse.
Due to this fact, several algorithms have been proposed trying to simplify time
series, which are also known as time series representation procedures. Keogh et al.
[9] proposed different algorithms using piecewise linear approximations (PLA),
which try to discover a set of points whose interpolations are the representation
of the segments. Two PLA well-known algorithms are Top-Down and Bottom-
Up, which iteratively reduce the error of the approximation. Other time series
representation algorithms are the piecewise aggregate approximation (PAA) or
the adaptative piecewise constant approximation (APCA) [10].

In this work, the contribution is focused on PLA segmentation algorithms,
trying to find the set of points whose interpolations minimize the error of the
resulting approximation. To do so, we propose a new variant of the barebones ex-
ploiting particle swarm optimization algorithm (BBePSO) [11], using the weigh-
ted average values of the visited positions of the particles and the best one from
all the generations, instead of considering only the current ones. PSO is another
evolutionary algorithm which simulates the behaviour of a set of particles when
looking for food, and it has been applied to a lot of problems, such as routing
vehicle [12], video tracking [13], etc. BBePSO has been proposed to improve the
convergence of the standard BBPSO (which used a normal distribution to decide
the movement of the particles), adding an exploiter component. In BBePSO, the
algorithm converges using the current positions. In this paper, we show that the
consideration of the past values in the evolution is important for the performance
of the algorithm, and we propose a method in this direction, WBBePSO. This
method takes the previous and the current positions into account, dynamically
adapting the current positions by a weighted mean of the past values (giving
more importance to those positions closer in time). This methodology modifies
the mean and the standard deviation of the normal distribution considered in
the standard BBePSO.

Evolutionary algorithms are able to find high-quality areas using popula-
tions of individuals. For this reason, they are robust heuristics which can solve
different problems. However, their main drawback is their poor ability when
finding the precise optimum in the areas they converge. The application of local
searches in different parts of the evolutionary process is a way to prevent this
problem. In this work, we combine the best solutions obtained by all the evo-
lutionary methods (PSO, BBePSO and the proposed WBBePSO) with a local
search combining Bottom-Up and Top-Down algorithms. In this sense, the re-
sulting hybrid methods are referred to as HPSO, HBBePSO, and HWBBePSO,
respectively.

This paper is organised in the following sections: Section 2 describes the prob-
lem of time series segmentation, Section 3 presents all the algorithms adapted to
time series segmentation, Section 4 describes the datasets, the performed exper-
iments and the discussion of the results (including a statistical validation) and
Section 5 concludes the paper.
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2 Time series segmentation problem definition

The main objective of this paper is to reduce the number of points of a given
time series Y = {yi}Ni=1 in a set of L segments by cutting the values of the
time series using L− 1 cut points (t1 < t2 < · · · < tL−1). The error approxima-
tion resulting from the linear interpolation between the cut points needs to be
minimised with the aim of avoiding information loss. That is, the cut points t
(arranged from the smallest to the largest) are extracted from all time indexes,
obtaining the set of segments S = {s1, s2, . . . , sL}, where s1 = {y1, . . . , yt1},
s2 = {yt1 , . . . , yt2}, . . . , sL = {ytL−1

, . . . , yN}. As stated before, a linear interpo-
lation each pair of consecutive cut points is considered. Note that the cut points
belongs to two segments (the previous and the next one). The number of seg-
ments of the approximation is a value predefined by the user. In order to solve
this problem, we apply swarm intelligence algorithms.

3 Algorithms and their adaptations

This section presents the details of PSO, BBePSO and WBBePSO, together
with their specific adaptation for time series segmentation.

3.1 Particle Swarm Optimisation algorithm (PSO) and its
barebones exploiting version (BBePSO)

The particle swarm optimisation (PSO) [14] is another evolutionary-type algo-
rithm which simulates the behaviour of a set of particles in a swarm when they
are looking for food (i.e. birds or fish). The population of individuals corresponds
with a set of K particles moving in a dimensional space of length D. Each par-
ticle k is represented by a position array of real values (xk), which represents
a solution of the problem, and the velocity of the particle vk, which represents
the strength and the direction of the movement of the particle. The quality of a
particle is calculated by a fitness function (f). PSO also stores the best position
found by the particle (pk) and the best position found by the entire swarm (g).
The evolution is based on a good compromise between local and global best
positions, also known as cognitive and social components, respectively. In each
iteration t, the PSO algorithm performs the following updates:

– Velocity update: the velocity vk is updated in iteration t (vt
k) following the

next expression.

vt
k = w · vt−1

k + ρt1 · C1 ·
(
pt−1
k − xt−1

k

)
+ ρt2 · C2 ·

(
gt−1 − xt−1

k

)
, (1)

where w is the inertia weight (a parameter used for velocity reduction, i.e.,
particles roaming), ρt1, ρt2 are uniform random values obtained at iteration
t, ρ1, ρ2 ∼ U(0, 1), and C1, C2 are the acceleration constants.

– Position update: the position of a particle at iteration t (xt
k) is then updated

using the expression:
xt
k = xt−1

k + vt
k. (2)
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– Best local and global position update: finally, the best local position at iter-
ation t is:

pt
k =

{
pt−1
k if f(xt

k) ≥ f(pt−1
k ),

xt
k if f(xt

k) < f(pt−1
k ),

(3)

for k = 1, . . . ,K, and the global best position is updated as:

gt = arg minx∈{g,pt
1,...p

t
K} {f(x)} . (4)

Note that we consider minimisation problems (the lower value of f(xk), the
higher quality of xk), which is the case of the problem to solve (minimisation of
approximation error).

An improved version of PSO is the exploiting barebones PSO (BBePSO)
[11]. This algorithm updates the position of the particles in the swarm without
considering velocities. BBePSO replaces Equations 1 and 2 by:

xtk,j =




N

(
pt−1
k,j +gt−1

j

2 , |pt−1k,j − gt−1j |
)

if U(0, 1) < 0.5,

pt−1k,j otherwise,
(5)

where N(µ, σ) is a normal distribution with mean (µ) equal to the average value
of the best global and local positions, and the standard deviation (σ) equal to
the difference, in absolute terms, of their values. This expression represents a
0.5 probability that the j-th dimension of the particle k takes a random value
from the previous normal distribution (exploration) or from the best personal
position (exploitation). BBePSO outperforms other variants of PSO [11], and it
is also better when the values of the velocities or the acceleration constants are
difficult to estimate.

PSO and BBePSO for time series segmentation: the particle representa-
tion corresponds to a real array (xi). The closest integer of each value represents
a cut point, for instance, if xi = {2.56, 6.08, 9.10, 11.75}, its corresponding set
of cut points in the time series is t = {3, 6, 9, 12}. In this way, the length of the
chromosome will be the same that the number of cut points L − 1. The initial
population of PSO and BBePSO is formed by K particles with integer values
without repetition (the values need to be unique). The standard procedures are
used for updating velocities (in PSO), the particle positions and the best per-
sonal and global positions. However, after position update, the new particle has
to satisfy two constraints:

– The values of the positions must be sorted, that is, (xk,1 < xk,2 < xk,L−1).
For this reason, if xk,j > xk,j+1, or xk,j < xk,j−1, the cut points of the
chromosome are sorted in ascending order.

– Furthermore, the cut points need to be higher than 1 and lower than N .
If this constraint is not satisfied, the algorithm rescales the values of the
particle with:

xt′
i =

xt
i−min{xt

i}
max{xt

i}−min{xt
i}

(max{xt−1
i } −min{xt−1

i }) + min{xt−1
i }.

Finally, the algorithm is run until a number of evaluations is reached.
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3.2 Weighted BBePSO (WBBePSO)

Our proposal is a new dynamic version of BBePSO. BBePSO updates the values
of the positions taking into account the best personal and global positions. In
this sense, the previous values are forgotten during the evolution when a particle
is updated. In PSO, the velocities and the inertia weight w can be considered as
a memory of the previous values, but this algorithm is poorer than BBePSO in
finding solutions, given that it lacks an exploiter component. Keeping in mind
the necessity of this memory and that more recent positions should be given
more importance, we define a new Weighted BBePSO (WBBePSO), where the
position update is made as follows:

xtk,j =




N

(
pt−1
k,j +pt−1

g,j

2 , |pt−1k,j − gt−1j |
)

if U(0, 1) < 0.5,

pt−1k,j otherwise,
(6)

where the best local position is updated as:

ptk,j =

∑t
m=1mp

m
k,j∑t

m=1m
, (7)

and the best global one as:

gtj =

∑t
m=1mg

m
j∑t

m=1m
. (8)

It is important to mention that the higher the value of m, the more importance
is given to the solution, so that more recent particles have more influence in the
update process.

WBBePSO for time series segmentation: the adaptation of the algorithm
to time series segmentation follows the same considerations than for PSO and
BBePSO (a real encoding, rounding the values to time indices, and a procedure
for ensuring the fulfilling of the constraints).

3.3 Common elements for all the algorithms

This section presents the elements which are common for PSO, BBePSO and the
proposed WBBePSO, i.e. the fitness function and the local search procedure.

Fitness function As we mentioned before, the main objective is to reduce the
number of points of the time series with the minimum information loss. For
that, we minimise the approximation error, which is the difference between a
real point of the time series and its corresponding approximation. The error of
the i-th point in the k individual is:

ei(xk) = (yi − ŷi(xk)), (9)
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where yi is the real value of the time series, and ŷi is the approximation resulting
of the interpolation coded in individual xk. The fitness function is defined as the
root mean square error:

RMSE(xk) = f(xk) =

√√√√ 1

N

N∑

i=1

e2i (xk). (10)

Local search The best solution obtained by all evolutionary algorithms in the
last generation (PSO, BBePSO, or WBBePSO) is hybridised with a local search
[2] based on the combination of Bottom-Up and Top-Down segmentation pro-
cedures [9], resulting in hybrid algorithms (HPSO, HBBePSO, HWBBePSO).
On the one hand, Bottom-Up is an iterative algorithm which starts considering
each point of the time series as a cut point. In each iteration, it removes the cut
point (merging two consecutive segments) that results in the minimum increase
of approximation error. On the other hand, Top-Down is the opposite algorithm,
starting by considering only one segment. Then, in each iteration, the algorithm
recursively adds the cut point (splitting a segment) which results in the maxi-
mum decrease of error. The local search is based on removing a percentage of
cut points with the Bottom-Up algorithm and adding the same percentage of
points with Top-Down. For that, the stopping criteria of these algorithms is the
number of segments to be merged or cut.

4 Experimentation

The time series used, the experiments performed and the discussion of the results
are shown in this section.

4.1 Time series

For the experiments, we use 13 time series collected from different fields. Table
1 summarises the following information of each time series: name, type, length,
and source. Also, the time series are represented in Fig. 1.

4.2 Experimental setting

We evaluate the performance of HWBBePSO against the rest of hybrid meth-
ods described in Section 3, and we analyse the existence of significant differences
using statistical tests. For all the algorithms, we consider the same parameter
configuration than in [18] (which has been proved to be effective for many dif-
ferent optimisation problems): the population size is K = 200, the maximum
number of evaluations is 20, 000, the inertia (w) is established to 0.72 and the
acceleration constants (C1, C2) to 0.49. Finally, the percentages of reduction and
hybridization are 2.5% and 40%, respectively. The percentage of reduction corre-
sponds to the number of points of the approximation with respect to the original
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Table 1. Time series used

Name Type Length Source

Arrhytmia Cardiology data 9000 PhysioBank ATM [15]
B41043 Wave Height TS 7303 NDBC [16] (Puerto Rico)
B41044 Wave Height TS 7303 NDBC [16] (Puerto Rico)
B46001 Wave Height TS 8767 NDBC [16] (Alaska)
B46075 Wave Height TS 7303 NDBC [16] (Alaska)
BBVA Bank Market Rates 4174 (Spain)

DEUTSCHE Bank Market Rates 4174 (Germany)
HandOutlines Benchmark TS 8127 UCR Repository [17]

IBEX Stock prices TS 5730 https://es.finance.yahoo.com/

Mallat Benchmark TS 8192 UCR Repository [17]
SANPAOLO Bank Market Rates 4174 (Italy)

Société Genéralé Bank Market Rates 4174 (France)
StarLight Benchmark TS 8192 UCR Repository [17]

size, while the percentage of hybridisation represents the number of cut points
which are removed and added in the local search. All the algorithms are run 30
times with different seeds, due to their stochastic nature.

4.3 Discussion

The approximation errors in RMSE are shown in Table 2, together with associ-
ated average ranks (R = 1 for the best method in each dataset and R = 3 for the
worse one). For all the algorithms, the mean and the standard deviation (SD) of
the 30 runs are presented (Mean ± SD). As can be seen, HWBBePSO outper-
forms the rest of algorithms with the best results in all datasets except in the case
of Société Générale, where it is the second best. The second best method seems
to be HBBePSO with better results than HPSO in several datasets (B41043
or DEUTSCHE among others). However, this algorithm (HPSO) obtains lower
errors in other datasets, such as BBVA or Mallat.

Analysing the standard deviation of the results, HWBBePSO presents the
lowest values in almost databases (8 out of 13 datasets, and the second one
in other two) showing its effectiveness and that the evolution does not depend
on the initialisation. From this analysis, it can be observed that the algorithm
HWBBePSO balances the use of previously visited positions, giving more impor-
tance to the most recent ones. In this way, it is able to converge to high-quality
areas, avoiding a premature convergence, and, moreover, when combined with
the local search, the resulting hybrid algorithm finds an optimum solution in
these areas.

To determine the statistical significance of the rank differences observed for
each swarm intelligence algorithm in the different time series, we have carried
out a non-parametric Friedman test [19] with the ranking of RMSE of the best
models as the test variable (since a previous evaluation of the RMSE values
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Table 2. RMSE results and mean ranks (R̄RMSE) for all the algorithms

Algorithm HPSO HBBePSO HWBBePSO
(Mean ± SD) (Mean ± SD) (Mean ± SD)

Arrhytmia 0.052 ± 0.002 0.052 ± 0.002 0.051 ± 0.001
B41043 0.395 ± 0.006 0.394 ± 0.006 0.389 ± 0.003
B41044 0.392 ± 0.009 0.391 ± 0.007 0.382 ± 0.004
B46001 0.984 ± 0.008 0.980 ± 0.007 0.975 ± 0.006
B46075 1.046 ± 0.011 1.040 ± 0.012 1.034 ± 0.009
BBVA 0.319 ± 0.008 0.323 ± 0.009 0.317 ± 0.008

DEUTSCHE 1.926 ± 0.055 1.915 ± 0.062 1.905 ± 0.076
HandOutlines 0.006 ± 0.000 0.006 ± 0.000 0.006 ± 0.000

IBEX 205.688 ± 3.894 206.132 ± 3.954 203.128 ± 4.085
Mallat 0.162 ± 0.007 0.167 ± 0.007 0.157 ± 0.009

SANPAOLO 0.111 ± 0.003 0.110 ± 0.002 0.109 ± 0.001
SOGenéralé 2.154 ± 0.052 2.127 ± 0.042 2.136 ± 0.031

StarLightCurves 0.024 ± 0.001 0.024 ± 0.001 0.023 ± 0.001

R̄RMSE 2.62 2.23 1.15

The best method is shown in bold face and the second one in italics.

resulted in rejecting the hypothesis of normality and equality of variances). The
test shows that the effect of the algorithm used for dimensionality reduction is
statistically significant at a significance level of 5%, as the confidence interval is
C0 = (0, F0.05 = 3.40) and the F-distribution statistical value is F ∗ = 16.16 /∈
C0. Consequently, we reject the null-hypothesis stating that all the algorithms
perform equally in mean ranking for RMSE.

Based on this rejection, the Holm post-hoc test is used to compare the three
algorithms to each other. Holm test is a multiple comparison procedure that
considers a control algorithm (CA), in this case HWBBePSO, and compares it
with the remaining methods [20]. The test statistics for comparing the mean
rank of the i-th and j-th algorithm using this procedure is:

z =
R̄i − R̄j√

k(k+1)
6N

, (11)

where k is the number of algorithms and N the number of datasets. The z value is
used to find the corresponding probability from the table of normal distribution,
which is then compared with an appropriate level of confidence α. Holm’s test
adjusts the value for α in order to compensate for multiple comparison.

The results of the Holm test for α = 0.05 can be seen in Table 3, using
the corresponding p and α∗Holm values. From the results of this test, it can be
concluded that the HWBBePSO algorithm obtains a significantly higher ranking
of RMSE when compared to the remaining two algorithms, which justifies the
proposal.
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Table 3. Holm tests comparing HWBBePSO (CA) with the rest of methods: p-values
and α∗

Holm with initial α = 0.05

CA: HWBBePSO HPSO HBBePSO

p-value 1.90× 10−4(∗) 6.04× 10−3(∗)
α∗
Holm 0.025 0.050

(*): statistically significant differences were found for α = 0.05

Finally, to visually analyse the results, the approximations obtained by the
algorithms HWBBePSO for all datasets are shown in Fig. 2. Comparing Figures
1 and 2, the algorithm results in faithful approximations of the real values.

5 Conclusions

In this paper, we propose a new algorithm for time series segmentation with the
objective of reducing the length of the time series with minimum information
loss. The algorithm reduces the approximation error using interpolations of each
segment. The paper includes a particle swarm optimisation algorithm (PSO),
its exploiter barebones version (BBePSO), and a novel BBePSO version which
takes into account the weighted value of the previously visited positions, giving
more importance to recent ones (WBBePSO). The best solution obtained by
all the algorithms are then improved with a local search procedure, resulting in
hybrid versions (HPSO, HBBePSO, and HWBBePSO). The evaluation of the
method is made in 13 time series from different fields.

The experiments show that the best results, those with lowest approximation
error, are obtained by HWBBePSO, showing that considering all the positions
visited by a particle during the evolution is good for this kind of problems.
Moreover, the standard deviation of the new methodology is the lowest one
in almost time series, i.e. the algorithm is less dependent on the initialisation.
Finally, the approximated time series are represented, they being very similar to
the original ones.

Future research includes considering the approximated time series in other
posterior tasks, using other types of approximations (instead of PLA) and adding
more time series to the validation.
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Fig. 1. Time series considered for the experiments.

38 sciencesconf.org:bioma2018:178742



0 1000 2000 3000 4000 5000 6000 7000 8000 9000

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

y
la

b
e
l

xlabel

(a) Arrhytmia

0 1000 2000 3000 4000 5000 6000 7000

1

2

3

4

5

6

y
la

b
e

l

xlabel

(b) B41043

0 1000 2000 3000 4000 5000 6000 7000

1

2

3

4

5

6

7

8

y
la

b
e

l

xlabel

(c) B41044

0 1000 2000 3000 4000 5000 6000 7000 8000

1

2

3

4

5

6

7

8

9

10

y
la

b
e

l

xlabel

(d) B46001

0 1000 2000 3000 4000 5000 6000 7000

2

4

6

8

10

12

y
la

b
e

l

xlabel

(e) B46075

0 500 1000 1500 2000 2500 3000 3500 4000
4

6

8

10

12

14

16
y
la

b
e

l

xlabel

(f) BBVA

0 500 1000 1500 2000 2500 3000 3500 4000

20

30

40

50

60

70

80

90

100

y
la

b
e

l

xlabel

(g) DEUTSCHE

0 1000 2000 3000 4000 5000 6000 7000 8000

−2

−1.5

−1

−0.5

0

0.5

1

1.5

y
la

b
e

l

xlabel

(h) HandOutlines

0 1000 2000 3000 4000 5000
2000

4000

6000

8000

10000

12000

14000

y
la

b
e
l

xlabel

(i) IBEX

0 1000 2000 3000 4000 5000 6000 7000 8000

−1

−0.5

0

0.5

1

1.5

2

2.5

y
la

b
e
l

xlabel

(j) Mallat

0 500 1000 1500 2000 2500 3000 3500 4000

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

y
la

b
e

l

xlabel

(k) SANPAOLO

0 500 1000 1500 2000 2500 3000 3500 4000

20

40

60

80

100

120

140

y
la

b
e

l

xlabel

(l) Société Genéralé
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Fig. 2. Approximation time series of HWBBePSO.

39 sciencesconf.org:bioma2018:178742



References

1. Esling, P., Agon, C.: Time-series data mining. ACM Computing Surveys (CSUR)
45 (2012) 12

2. Durán-Rosal, A.M., Gutiérrez-Peña, P.A., Mart́ınez-Estudillo, F.J., Hervás-
Mart́ınez, C. In: Time Series Representation by a Novel Hybrid Segmentation
Algorithm. Springer International Publishing, Cham (2016) 163–173

3. Ferreira, L.N., Zhao, L.: Time series clustering via community detection in net-
works. Information Sciences 326 (2016) 227–242

4. Zhao, J., Itti, L.: Classifying time series using local descriptors with hybrid sam-
pling. IEEE Transactions on Knowledge and Data Engineering 28 (2016) 623–637

5. Chen, M.Y., Chen, B.T.: A hybrid fuzzy time series model based on granular
computing for stock price forecasting. Information Sciences 294 (2015) 227–241
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ABSTRACT 

In today’s world, human beings aim to utilize the maximum benefit from the limited 

amount of available resources. For example, in engineering design, engineers tend to design 

structures that meet all design requirements at the possible lowest cost. Optimization plays an 

important role in structural design, providing engineers with a variety of techniques to deal with 

such problems [1]. Size optimization has become a major field among researchers with the 

increasing processing power of the computers. The design variables are taken as the cross-

sectional areas of the structural members and the constraints are the limitations imposed on 

stresses and displacements that occur in the structure under the applied loads. The objective 

function is generally considered as to minimize the overall or material cost of the structure. 

Searching for the optimum solutions of truss systems is one of the common benchmark 

problems in the field of structural engineering. In general terms, the optimum design of a truss 

structure is finding the optimum cross sectional areas for its members that results in a minimum 

weight or cost design of the structure. This is a complex and nonlinear design process, which 

causes the optimization problem to be highly nonlinear and thus difficult to solve. In addition 

to adversity of the problem, as the members of truss structures used in real life come from a 

finite number of standard cross-sections in the tables, the optimization problem is discrete in 

nature and requires metaheuristic algorithms that can handle discrete variable sets [2]. 

Initially, mathematical optimization techniques were used in structural optimization. 

However, designing an optimal structure with mathematical algorithms requires gradient 

information of the problem and the initial estimate of the solution vector to start the iterations. 

These problems have led the researchers to investigate new approaches based on different 

concepts, resulting in the emergence of stochastic search algorithms called “metaheuristics” 

[3]. Metaheuristic algorithms do not require gradient information. They have an ability to 

handle both discrete and continuous problems and decent incorporating global search features 

to yield reasonable solutions for mathematically complex problems [4]. The reviews of the 

widely-used metaheuristic algorithms in the field of structural optimization analyses are 

outlined in several extensive review articles [2,3,5–8]. 

Metaheuristics are usually applied to the problems that do not have a satisfactory 

problem-specific algorithm to solve them. They have a wide application field in industry and 

services, to solve the complex problems from finance to production management and 

engineering [8]. However, the slow convergence rate and the excessively time-consuming 

number of structural analyses are still considered to be fundamental deficiencies of these 

techniques in structural optimization applications [9]. To overcome these shortcomings, 

researchers proposed the improved versions of the existing algorithms such as enhanced particle 

swarm optimization [10] and enhanced biogeography-based optimization [11]. Yet, these 
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improved algorithms provide solutions for specific algorithms and problems. Another remedy 

proposed by the researchers is the hybridization of the optimization algorithms, which enables 

the use of the powerful and successful features of various algorithms in one hybrid algorithm. 

Christian and his colleagues reviewed hybrid metaheuristics in their comprehensive survey 

[12]. 

An alternative way to improve the computational efficiency of metaheuristics is to 

implement a strategy, which may be developed by inspiration from nature or some other 

selection scheme. In order to implement these strategies to the metaheuristic algorithms, the 

algorithm should have the same specific features with the proposed strategy. Azad et al. 

proposed upper bound strategy for optimization of steel frames with metaheuristic algorithms 

[13]. The upper bound strategy reduces the total number of structural analyses through avoiding 

unnecessary analyses during the course of optimization. Once identified, the non-improving 

designs are directly excluded from the structural analysis stage, thus the computational effort 

decreases significantly. This strategy could be implemented to the algorithms that employ a 

𝜇 + 𝜆 selection scheme in their algorithmic models. In this selection scheme, 𝜇 parents generate 

𝜆 offsprings and 𝜂 (which is equal to 𝜇) best individuals that are selected out of 𝜇 parents and 

𝜆 offsprings according to their fitness values; thus, the number of individuals remains the same 

in each generation [13].  

In size optimization of trusses, the “best” solution should be interpreted as “the lightest 

design that does not violate any of the constraints” in most of the applications. The “worst” 

design is “the design with the greatest penalty amongst the solutions that violates the 

constraints”. Implementing the penalty function approach, the infeasible designs are moved to 

the ends of the candidates list and the solution with the greatest penalty generally has the most 

unfavorable objective function. Some of the metaheuristic algorithms order the candidates with 

respect to their objective values and/or use the best and worst solution obtained so far (global 

best and worst) or the ones in the candidates list (local best and worst) to build the next 

generation of candidates. The constraint functions should be evaluated and penalized objective 

values should be found to determine which solution is the worst. The other group of 

metaheuristics does not need to determine the best and the worst solution to apply the movement 

operator. Considering that the expensive operations of the truss optimization problems are 

checking the displacement and stress constraint violations by performing static analysis of the 

truss, any strategy that eliminates the redundant analyses improves the performance of the 

algorithm significantly. 

This paper presents Two-stage Candidate Evaluation Strategy (TCES) for optimization 

of truss structures with metaheuristics to eliminate the unnecessary structural analyses during 

the optimization process and improve the computational efficiency for the algorithms that do 

not use the objective function values of the candidate solutions in their movement operators. 

The proposed technique considerably reduces the computational effort while maintaining the 

exploration/exploitation capability of the algorithms in solving optimization problems. The 

efficiency of TCES is validated by implementing it to the Crow Search Algorithm (CSA) [14], 

which is one of the recently published metaheuristic algorithms that does not use the objective 

function values of the candidate solutions, yet it can be integrated with any other metaheuristic 

algorithms of which movement operators do not take objective values of other individuals into 

consideration. The efficiency and reliability of the proposed strategy are demonstrated through 

the common benchmark problems of steel truss-sizing problems as 10-bar cantilever truss with 

42 sciencesconf.org:bioma2018:178777



continuous and discrete variables [15] and numerical results are discussed in detail. Numerical 

results reveal that the proposed strategy significantly decreases the number of the structural 

analyses performed to converge to a near optimal result for each benchmark problem. The 

lightest designs in the existing literature are around 5062 and 5490 lbs for the continuous and 

discrete variable versions of the 10-bar cantilever truss sizing problem, respectively. It is shown 

that the TCES can provide up to 8.66 times saving in computational effort. 

Keywords: optimization, truss structures, bioinspired, metaheuristics, structural design 
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Abstract. Class imbalance is among the most persistent complications
which may confront the traditional supervised learning task in real-world
applications. Among the different kind of classification problems that
have been studied in the literature, the imbalanced ones, particularly
those that represents real-world problems, have attracted the interest of
many researchers in recent years. In order to face this problems, different
approaches have been used or proposed in the literature, between then,
soft computing and ensemble techniques. In this work, ensembles and
fuzzy techniques have been applied to real-world traffic datasets in order
to study their performance in imbalanced real-world scenarios. KEEL
platform is used to carried out this study. The results show that different
ensemble techniques obtain the best results in the proposed datasets.

Keywords: Intelligent Transportation Systems, Imbalanced Data, En-
semble techniques, Fuzzy techniques, Soft Computing techniques, Clas-
sification

1 Introduction

Class imbalance is among the most persistent complications which may confront
the traditional supervised learning task in real-world applications [1]. The prob-
lem appears when the number of instances in one of the classes significantly
outnumbers the number of instances in the other ones. This situation is a hand-
icap when trying to identify the minority class, as the learning algorithms are
not usually adapted to such characteristics. Without the loss of generality, it
can be assumed that the class of interest is the minority class, while the other
ones are the majority ones. Various applications demonstrate this characteristic
of high class imbalance, such as bioinformatics, e-business, information security,
and national security.

Among the different kind of classification problems that have been studied
in the literature, the imbalanced ones, particularly those that represents real-
world problems, have attracted the interest of many researchers in recent years
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[2, 3]. In particular, in traffic environments, the apparition of a particularly
complicated state of the road (i.e. traffic congestion) will represent a minority
class for prediction algorithms, while its proper detection in advance is a topic
of interest for administrations and users.

One of the most problematic issues in the development of actual cities is road
traffic. This problem is actually one of the most important study focuses of the
Intelligent Transportation Systems (ITS) field. In the last decades, intelligent
techniques such as those mentioned before have been applied to solve this prob-
lem. In particular fuzzy systems are used in [4] to infer the future state of the
road by combining several systems in a hierarchical way. In addition different
metaheuristics have been used in order to optimize systems, such as Support
Vector Machines [5] (SVM); Genetic Algorithms (GA) are used in [6], while
Particle Swarm Optimization (PSO)is implemented in [7], among others.

Recently, ensemble learning is a popular and significant research in data min-
ing and machine learning area. Ensemble classifiers have received considerable
attention in applied statistics and machine learning for over a decade [8]. Several
studies demonstrate that the practice of combining several models into a aggre-
gated one leads to significant gains in performance over its constituent members
[9].

The principal aim is to make a comparative study between the performance
of ensembles and fuzzy recent approaches in traffic state prediction, which is a
multi-classification problem with a high imbalance between classes. Data used
in this work come from two sources. The first one comes from cameras in the
city of Helmond (The Netherlands) collected by TASS International company 1

and took part of the developing of different models for traffic systems in Horizon
2020 TIMON project 2 (Enhanced real time services for optimized multimodal
mobility relying on cooperative networks and open data). Another data source
used for the development of this work is the data obtained in Lisbon (Portugal)
A5 highway, and used in the European Project ICSI (Intelligent Cooperative
Sensing for Improved Traffic Efficiency).

The rest of the paper is structured as follow. Section 2 contains the state of
the art of the two kind of techniques applied in this work: ensembles and meta-
heuristics. Section 3 is dedicated to the descriptions of the different methods used
for this comparative study. In Section 4 information about the datasets used and
its comparative is shown. Finally, in Section 5 the conclusions obtained for this
study are collected.

2 Background

In this section, a brief study of the state of the art is presented in order to
show the contributions of the community to the imbalance data problem using
ensembles (Section 2.1), in specially boosting and bagging algorithms, and meta-
heuristics (Section 2.2).

1https://www.tassinternational.com/
2https://www.timon-project.eu/
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2.1 Ensembles

Ensemble learning is defined as the use of multiple learning algorithms to obtain
better predictive performance that could be obtained from any of these algo-
rithms alone [10]. Over the last decade, this kind of approach has been used
in different themes such as optimization [11], medicine [12], or ITS [13]. Focus-
ing in imbalance classification problems, these algorithms can be found in many
articles. For example, in [14], Lim et al. propose a evolutionary cluster-based
oversampling ensemble framework. This method is based on contemporary ideas
of identifying oversampling regions using clusters. The evolutionary part of the
ensemble is used to optimize the parameters of the data generation method and
to reduce the overall computational cost. The proposal is applied to a set of 40
imbalance datasets.

Among the different ensemble techniques, two of them can be frequently
found in the literature applied to several themes: bagging and boosting tech-
niques [15]. While in bagging several models are created using different subsets
of the training set [16], in boosting, a set of weak learning algorithms create a
single strong learner and produce only one model [17]. Both kind of methods
have been used in imbalance classification.

Authors in [9] analyze different corrective and total corrective boosting algo-
rithms in order to present its own boosting algorithm adding a strong classifier
to the linear constraints of LPBoost. Besides, in [18], an Adaboost algorithm to
learn fuzzy-rule-based classifiers is proposed. Adaboost approach is applied to
approximate and descriptive fuzzy-rule bases, and the performance of the pro-
posed method is compared with other classification schemes applied on a set of
benchmark classification tasks.

Other example can be found in[19]. This article presents a research about
the Roughly Balanced Bagging and its basic properties that can influence its
classification performance. Variables such as the number of component classifiers,
their diversity, and ability to deal with difficult types of the minority examples
are studied. The experiments are carried out using synthetic and real life data.

The number of articles related with this theme is wide extended in the lit-
erature, which means that it is an active issue. In this section, some interesting
examples have been exposed, but, in order to give more information and related
articles about the problem we are dealing with, interested reader are referred to
[20], [21], and [22] for different surveys about this issue.

2.2 Soft Computing techniques applied to imbalance datasets

Soft Computing techniques have been widely used since its presentation in 90’s
by Zadeh [23]. Machine Learning, Fuzzy Logic, and Evolutionary Computation
methods are inside the vast group of Soft Computing techniques. Techniques such
as GAs, SVM, Fuzzy Rule Based Systems, PSO and so on, have been developed
and applied to different themes along the years, showing their good performance
and the huge range of possibilities that they offer.
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Regarding Fuzzy Logic techniques, fuzzy logic methods have been used in
imbalance cases of study along the years. For example, in [24], a fuzzy technique
is developed to predict heart diseases. The technique is divided in three phases:
first, a fuzzy c-means clustering algorithm is used. Then, rules are generated
from the rough set theory, and those rules are used for prediction with the fuzzy
classifier.

Another case can be found in [25], where linguistic Fuzzy Rule Based Systems
have been applied to imbalance datasets to deal with the overlapping problems
between the concepts to be learned. This problem is more severe in imbalance
datasets due to the most of the techniques try to correctly classify the majority
class and, in cases of imbalance distribution of the data, it is the minority class
where the most important data can be found. Datasets used are extracted from
KEEL dataset repository.

Finally, authors of this study are aware of the huge amount of related papers
that can be found in the literature. In this work, we have mentioned some of the
most interesting research papers, in order to give an idea of the activity that is
being carried out in the community. For further information, we recommend the
reading of any of the review papers that can be found in the literature, such as
[26], or [27]. In this work, fuzzy methods will be used to study their performance
in a real imbalance scenario.

3 Techniques used for the comparative study

As mentioned in previous sections, one of the aims of this work is to study the
performance of ensembles and fuzzy meta-heuristic techniques when they are
applied to imbalanced problems. A total of 10 techniques are chosen, divided in
two principal groups: six ensemble techniques, and four fuzzy ones. Due to the
limited space, only the name of the techniques as well as a brief description of
them are listed below:

– Ensemble techniques

1. AdaBoost (I) [28] is an adaptation of general Adaboost for imbalance
datasets.

2. MSSMOTE Bagging [29] oversamples minority class instances using MSMOTE
preprocessing algorithm. In this method both classes contribute to each
bag with N instances.

3. MSSMOTE Boosting [30] introduces synthetic instances in each iter-
ation of AdaBoost technique, using the MSMOTE data preprocessing
algorithm.

4. RUSBoost [31] removes instances from the majority class by random
undersampling the data-set in each iteration.

5. SMOTE Bagging [32] oversamples minority class instances using SMOTE
preprocessing algorithm.

6. SMOTE Boosting [33] introduces synthetic instances in each iteration of
AdaBoost technique, using the SMOTE data preprocessing algorithm.
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All ensemble techniques used in this work have C4.5 algorithm as base clas-
sifier.

– Fuzzy Classification techniques
1. AdaBoost (C) [34] is a boosting algorithm, which repeatedly invokes a

learning algorithm to successively generate a committee of simple, low-
quality classifiers.

2. LogitBoost [35] is a backfitting algorithm, which repeatedly invokes a
learning algorithm to successively generate a committee of simple, low-
quality classifiers.

3. FARCHD-C [36] mines fuzzy association rules limiting the order of the
associations in order to obtain a reduced set of candidate rules with less
attributes in the antecedent.

4. C4.5 [37] is a decision tree generating algorithm that it induces classifi-
cation rules in the form of decision trees from a set of given examples.
C4.5 is based on ID3 algorithm.

It is important to remark that the different betweenAdaBoost(C) andAdaBoost(I)
is the base classifier. While the first one counts with fuzzy classifiers, the second
one uses a C4.5 algorithm as base classifier.

4 Experimentation

This section compiles the experimentation carried out in this work. Datasets
used in this work as well as the information related to them are exposed in
Section 4.1 while the results, and statistic methods applied are summarized in
Section 4.2.

4.1 Datasets and preprocessing

Datasets used in this work contains real data from traffic cameras in the city of
Helmond (The Netherlands). This data is provided by TASS international 1 and
used in the Horizon 2020 project TIMON project2 (Enhanced real time services
for optimized multimodal mobility relying on cooperative networks and open
data). Congestion in the road is used as class variable. In the raw data, this vari-
able can take four different values: Normal, Increasing, Dense and Congestion.
In order to simplify and make the problem equal to the techniques mentioned
in the previous section, the classes have been reduced by two: Normal (majority
class) and Congestion value (minority class), which includes Increasing, Dense
and Congestion instances. Each dataset counts with a total of 22 variables, which
includes not only information about the speed, the number of vehicles or the oc-
cupancy of the road, but the weather when data was taken. Data used in this
work are collected during two months by four cameras, and divided in four dif-
ferent horizons of time (15, 30, 45 and 60 minutes respectively), which makes a
total of 16 datasets.

1https://www.tassinternational.com/
2https://www.timon-project.eu/
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Besides, data collected from Lisbon highway A5 used in EU project ICSI
1 have been also used. This highway is a 25 km long motorway in Portugal
that connects Lisbon to Cascais. Data used in this work was collected from
seven sensors displayed in the road and transformed into datasets. As well as
in Helmond datasets, congestion in the road is taken as class variable. In this
case, this class contains a value of congestion that appear in the next hour at a
certain point and can take as values LOW , if the number of vehicles are below
the percentile 15; MED (Medium), if the it is between percentiles 15 and 30;
and HIGH otherwise. Following the same logic applied to previous datasets,
LOW and MED instances have been labeled as Normal (mayority class) while
HIGH instances have been changed to Congestion label (minority class). Data
was collected during a month. The three first weeks are used as training data
while the last week of the month is used to validate the solutions. These datasets
are called BRISA datasets along the rest of the work.

Information about Imbalance Ratio (IR) and number of instances in each
dataset are shown in Table 1

Name of Dataset N. Instances IR

TASS datasets

C1 5333 8.1
C2 5338 8.2
C28 5348 8.16
C47 5449 7

Brisa datasets

CL600 721 2.04
CL1980 1441 2.26
CL3600 721 5.43
CL4000 1441 2.57
CL6800 721 2.13
CL8050 1441 2.25
CL9400 721 2.53

Table 1. Information about the datasets used in this work

4.2 Results

KEEL software [38] has been used to carry out the experiments. In the case
we are dealing with, the module for imbalanced techniques are used. The ex-
perimentations have been executed in a Intel Xeon E5 2.30 GHz with a RAM
memory of 32 GB. Related with the configuration of the techniques used in the
experimentation, the default configuration given by KEEL has been retained.
The Area Under the Curve (AUC) has been used as error metric. To show TASS
dataset results, datasets are divided by id of the camera and horizon of time.
Those results are shown in Table 2. Bold values represent the two best results
obtained in each dataset. .

1http://www.ict-icsi.eu
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Techniques
C1 C2 C28 C47

15 30 45 60 15 30 45 60 15 30 45 60 15 30 45 60

C4.5 .968 .958 .956 .963 .970 .954 .955 .955 .963 .949 .958 .962 .958 .964 .940 .953
FARCHD .805 .727 .642 .623 .788 .729 .612 .575 .808 .723 .667 .500 .829 .732 .642 .622
AdaBoost(C) .549 .563 .508 .500 .564 .614 .507 .501 .560 .540 .510 .500 .566 .541 .512 .501
LogitBoost .672 .668 .585 .537 .703 .678 .594 .548 .659 .657 .567 .531 .685 .662 .604 .560
AdaBoost(I) .939 .950 .957 .941 .951 .940 .950 .953 .952 .952 .938 .941 .950 .945 .930 .952
MSMOTEBagging .872 .942 .943 .941 .886 .939 .932 .929 .903 .945 .947 .936 .912 .937 .926 .927
MSMOTEBoost .916 .948 .935 .932 .936 .939 .925 .918 .939 .942 .940 .934 .935 .952 .934 .930
RUSBoost .976 .973 .971 .968 .973 .972 .967 .965 .972 .977 .968 .971 .971 .973 .968 .969
SMOTEBagging .916 .953 .936 .938 .923 .941 .934 .923 .937 .947 .943 .932 .893 .945 .926 .937
SMOTEBoost .956 .963 .960 .954 .946 .954 .954 .946 .946 .961 .959 .955 .952 .960 .958 .955

Table 2. AUC values obtained for each technique in each dataset and horizon of time
for TASS datasets

As it can be seen, three techniques stand out from the rest: RUSBoost,
SMOTEBoost, and C4.5. In case of RUSBoost, it obtains one of the two best
results in every dataset used, being the first one in each one of them. For SMOTE-
Boost, it gets one of the two best AUC values in 7 out of 16 datasets. Finally, for
C4.5, it achieves a value between the best two in 10 out of 16 datasets, especially
in C2 dataset. About the rest of the techniques, in general, ensemble techniques
obtain better results than fuzzy ones. Focusing in the fuzzy techniques, though
FARCHD and C4.5 achieves good performance in this problem without changing
anything in its execution, AdaBoost(C) and LogitBoost do not obtain a consid-
erable performance. In fact, AdaBoost(C) obtain the lowest AUC values in every
dataset in comparison with the rest of techniques. If both AdaBoost techniques
presented in this experimentation are compared, ensemble version of AdaBoost
(AdaBoost(I)) outperforms the fuzzy one. On the other hand, taking into ac-
count ensemble techniques, RUSBoost outperforms the rest of them, followed by
SMOTEBoost. However, all the techniques obtain a good performance in every
dataset and horizon of time, which always achieve an AUC value higher than
0.9. About the horizon of time, the increasing of this value does not seem to
affect to the performance of the techniques significantly. Only AdaBoost(C) and
LogitBoost notice the change of this value. The rest of the techniques obtains
almost the same performance when the horizon of time is 15 minutes than when
it takes the value 60 minutes. Some of them (SMOTEBagging, C1 dataset) even
improve its performance between these two horizons.

Table 2 contains the results obtained by each one of the techniques for each
BRISA dataset. As in the previous results, the two best values are highlighted
in bold.

The results show that MSMOTEBagging is the best technique so far in these
datasets, obtaining 4 out of 7 best values, following by RUSBoost and SMOTE-
Bagging, which both obtain 3 out of 7 best results. For the rest of the tech-
niques, about fuzzy techniques used, only AdaBoost (C) and LogitBoost obtain
bold values. Although their performance is not far from those obtained by the
best techniques, they do not reach the high AUC value obtained by the rest of
the techniques. Adaboost (C) and LogitBoost obtain one bold value, in dataset
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CL600 CL1980 CL3600 CL4000 CL6800 CL8050 CL9400

C4.5 .893 .919 .898 .945 .872 .940 .875
FARCHD .830 .955 .906 .928 .893 .951 .954
AdaBoost (C) .882 .938 .808 .938 .864 .948 .979
LogitBoost .853 .951 .891 .945 .884 .945 .975
AdaBoost(I) .886 .954 .859 .941 .852 .957 .892
MSMOTE-Bagging .924 .961 .928 .941 .909 .962 .867
MSMOTE-Boost .884 .957 .899 .954 .881 .965 .871
RUSBoost .902 .955 .919 .955 .909 .951 .896
SMOTEBagging .914 .958 .935 .958 .901 .954 .875
SMOTEBoost .928 .934 .915 .941 .897 .940 .921
Table 3. AUC values obtained for each technique in each Lisbon dataset

CL9400, being the two best techniques in the mentioned dataset. Comparing the
results obtained in the previous datasets, in this case, bagging techniques over-
pass boosting techniques, being RUSBoost the only one that can be compared
with the results obtained by them.

In order to assess if the differences in performance among the techniques
studied here are significantly different we employed non-parametric tests fol-
lowing the guidelines given by Garcia et al. in [39]. The procedure carried out
is described next. We first apply Friedman’s non-parametric test for multiple
comparison at a significance level α ≤ 0.05 to assess if we can reject the null
hypothesis of similar performance among all algorithms. If so, then we evalu-
ate if the performance of the best algorithm according to Friedman’s averaged
ranking versus the other classifiers is significantly better. To this end, we apply
Holm’s [40] and Finner’s [41] post-hoc tests at a significance level α ≤ 0.05 using
the best method as control algorithm. Following this procedure, we analyse the
performance of the algorithms globally over the two datasets.

We do the exercise of evaluating the performance of the methods over all
datasets. According to Friedman’s tests there exists significant differences among
algorithms. The averaged ranking displayed in Table 4 confirm that RUSBoost is
the most robust classifier followed by SMOTEBoost. On the contrary, the three
fuzzy algorithms are clearly the ones that show a worse performance, whereas
the result of the rest of algorithms is very similar. Using RUSBoost as control
algorithm for the Holm’s and Finner’s post-hoc tests, we observe in Table 5 that,
taking into account all datasets, it obtains significantly better AUC values that
the other studied methods, excepting SMOTEBoost, although even in this case
the significance level is quite near to the threshold, being equal to 0.07.

5 Conclusions

In this work, ensemble and fuzzy rules techniques have been applied to imbalance
real traffic datasets in order to classify correctly the state of the road in a real
scenario. In this case, data collected from cameras in the city of Helmond (The
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Algorithm Ranking

AdaBoost (I) 4.9783
C4.5 4.2391

FARCHD 7.5652
AdaBoost (C) 9.1739

LogitBoost 8.1087
MSMOTEBagging 5.2609
MSMOTEBoost 5.3913

RUSBoost 1.8043
SMOTEBagging 5.0652
SMOTEBoost 3.413

Table 4. Average Rankings of the
algorithms provided by Friedman’s
non-parametric test for multiple
comparisons over all datasets

Adjusted Adjusted
Algorithm p-value Holm p-value Finner

AdaBoost (C) 0 0
LogitBoost 0 0
FARCHD 0 0

MSMOTEBoost 0.000353 0.000132
MSMOTEBagging 0.000541 0.000195
SMOTEBagging 0.001039 0.00039

AdaBoost (I) 0.001134 0.000486
C4.5 0.012778 0.007185

SMOTEBoost 0.07157 0.07157
Table 5. Adjusted p-value returned by
Holm’s and Finner’s post-hoc tests for all
datasets

Netherlands), and from A5 Highway in Lisbon are used. Data from cameras was
collected by TASS international and used in H2020 TIMON project. In case of
A5 highway, this data was used in ICSI project. The aim of this article is to
compare the performance of ensemble and fuzzy techniques in imbalance real
scenarios.

As results, in Helmond datasets, ensemble techniques outperform those fuzzy
techniques used in the experimentation, with two techniques between the best
ones. Three techniques stand out the rest: RUSBoost, SMOTEBoost, and C4.5.
Among all, RUSBoost obtained at least one of the two best values in every
dataset used. For SMOTEBoost and C4.5, they obtained 7 out of 16 and 10 out
of 16 best values respectively. Regarding Lisbon datasets, ensemble techniques
again, specially Bagging techniques and RUSBoost, obtain better performance
than fuzzy techniques. All these results are checked using different statistical
tests.

As future works, other techniques for both groups can be used. Besides,
the experimentation could be applied to more datasets and other horizons of
time. Regarding this, one future work to take into account is to adapt ensemble
techniques to work with multiclass classification. This will increase the difficulty
of the problem as well as the IR of each dataset, making the data a good real
benchmark to use in comparatives like the presented in this paper.
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Abstract. In this paper, we present a novel algorithm called STAPSO,
which comprises Scrum task allocation and the Particle Swarm Opti-
mization algorithm. The proposed algorithm aims to address one of the
most significant problems in the agile software development, i.e., iteration
planning. The actuality of the topic is not questionable, since nowadays,
agile software development plays a vital role in most of the organizations
around the world. Despite many agile software development methodolo-
gies, we include the proposed algorithm in Scrum Sprint planning, as
it is the most widely used methodology. The proposed algorithm was
also tested on a real-world dataset, and the experiment shows promising
results.

Keywords: Agile Software Development, Particle Swarm Optimization,
Scrum, Software Engineering, Task Allocation

1 Introduction

The idea of the iterative and agile development is all but new [1]. Ongoing chang-
ing priorities, desire to accelerate product delivery, the increase of productivity,
improvement of project visibility, and enhancing software quality [2] are the top
five reasons for adopting agile. Furthermore, in the report from Gartner Inc. [3],
which is the world’s leading research and advisory company, it is evident that
the traditional project and development methods, e.g., waterfall, are evermore
unsuitable [4, 5]. Consequently, we can state that agile software development is,
nowadays, not a competitive advantage anymore, but rather the need for the
organizations to survive on the market.

Regardless of the chosen agile method, e.g., Scrum, Kanban, Scrumban, XP
(extreme programming), and Lean, monitoring of its performance must be car-
ried out. Success in agile projects is most often measured by velocity in 67%,
followed by the iteration burndown (51%), release burndown (38%), planned
vs. actual stories per iteration (37%), and Burn-up chart (34%) [2]. However, a
prerequisite for a successful monitoring of the progress is undoubtedly precise
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iteration planning. The latter is not only the number one employed agile tech-
nique in the organizations [2], but also one of the hardest tasks, as is evident
from many scientific papers [6, 7] and interviews conducted with different CIOs
(Chief Information Officers). Also, each task defined in a given iteration must be
estimated precisely. The estimation can be conducted with various techniques [8,
2], e.g., number sizing (1, 2, . . . , 10), Fibonacci sequence (1, 2, 3, 5, 8, . . . ), and
T-shirt sizes (XS, S, M, L, XL, XXL or XXXL). However, we must not forget
about dependencies between tasks which result in the implementation order.

Thus, from an apparently simple problem arises a considerable optimization
problem that is dealt with daily in organizations all around the world. When
dealing with numerous dependencies and tasks, solving a problem by hand be-
comes very hard. On the contrary, we propose a systematical solution that is
based on nature-inspired algorithms. Nature-inspired algorithms are a modern
tool for solving hard continuous and discrete problems. They draw inspiration
for solving such problems from nature. Until recently, more than 100 nature-
inspired algorithms have been proposed in the literature [9], where Particle
Swarm Optimization (PSO) [10] is one of the oldest and well-established nature-
inspired algorithms. Many studies have proved theoretically and practically that
PSO is a very simple, as well as efficient algorithm [11, 12] appropriate even for
real-world applications [13].

In this paper, we show the modifications of the basic PSO algorithm that
is applied to the problem of Scrum task allocation. The new algorithm, called
STAPSO, is developed, implemented, and tested on a real dataset.

We believe that this is the first work that deals with the problem of Scrum
task allocation in the optimization domain. Altogether, the purpose of this paper
is to:

– represent Scrum task allocation as an optimization problem,
– propose the Particle Swarm Optimization algorithm for solving Scrum task

allocation, or simply STAPSO, and
– test the proposed algorithm on a real dataset.

The structure of this paper is as follows: Section 2 outlines the fundamentals
of Scrum, while Section 3 describes the fundamentals of the PSO algorithm, to-
gether with STAPSO algorithm. Section 4 presents the design of the experiment,
along with the results in Section 5. The paper concludes with a summary of the
performed work and future challenges.

2 Scrum

Scrum is the most used agile methodology, with 58% share of the market [2] and
is by definition “a framework for developing, delivering, and sustaining complex
products” [14, 15]. It consists of three primary roles, i.e. the Scrum Master, the
Product Owner, and the Development Team. In the organizations, the Scrum
Master is responsible for Scrum promotion and offers support regarding Scrum
theory, values, and practices. Product Owner is a focal role since it is connected
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with the development team and the stakeholders. Two of his/her primary goals
are to maximize the value of the product, and definition of the user stories from
the product backlog. The remaining role, i.e., the Development Team, is liable
for product increment delivery at the end of each Sprint. The Development Team
is cross-functional and self-organizing, meaning that the people in it have all the
skills required to deliver the product successfully.

Fig. 1. The Scrum framework.

In Scrum, the process starts with the Product Owners’ definition of the
product backlog, which is a prioritized list of user stories (see Fig. 1). Afterwards,
Sprint Planning starts. At this meeting, the team decides which user stories from
the Product Backlog will be carried out in the upcoming Sprint (because the
Product Backlog is prioritized, they pull user stories from the top of the list).
The newly created document is called a Sprint Backlog and contains an in-
depth description of the chosen user stories. After that, everything is ready for
the beginning of the Sprint, that usually lasts between one and four weeks. Each
day of the Sprint starts with a brief daily Scrum (short stand-up meeting) at
which the Development Team exchanges opinions regarding the previous day
and highlights possible problems. At the end of each Sprint, Sprint Review and
Sprint Retrospective are carried out by the Development Team and the Product
Owner, with the intention to find the potential for improvement.

For the calculation of the optimal line, it is necessary to determine the du-
ration of the Sprint first (n days). For example, if we decide on the two week
long Sprints, the Development Team actually has ten working days, assuming
Saturday and Sunday are free days. After that, based on tasks from the Sprint
Backlog, the total estimated effort (t effort) is obtained as their sum. Optimum
per day (opt d) can now be calculated by Eq. 1.

opt d =
t effort

n days
(1)
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Ideal or optimal line (Oline) is derived from linear function f(x) = ax + b
and is presented by Eq. 2, where x denotes the specific day of the Sprint.

Oline = − t effort
n days

∗ x+ t effort (2)

Current line (Cline) is calculated by Eq. 3, where Edone denotes the sum-
marized effort of the tasks per given day.

Cline = Oline(x)− (Oline(x− 1)− Edone) (3)

3 Particle Swarm Optimization for Scrum task allocation

In this Section, the proposed algorithm called STAPSO is described in detail.
Since the algorithm is based on the PSO, its explanation is divided into two Sub-
sections. Subsection 3.1 depicts the fundamentals of the PSO, and Subsection 3.2
presents the proposed algorithm in detail.

3.1 Fundamentals of PSO

The PSO algorithm [10] preserves a population of solutions, where each solution
is represented as a real-valued vector x = (xi,1, . . . , qi,D)T for i = 1, . . . ,Np and
j = 1, . . . ,D , and the parameter Np denotes the population size, and the param-
eter D dimension of the problem. This algorithm explores the new solutions by
moving the particles throughout the search space in the direction of the current

best solution. In addition to the current population x
(t)
i for i = 1, . . . ,Np, also

the local best solutions p
(t)
i for i = 1, . . . ,Np are preserved, denoting the best i-

th solution found. Finally, the best solution in the population g(t) is determined
in each generation. The new particle position is generated according to Eq. (4):

v
(t+1)
i = v

(t)
i + C1U(0, 1)(p

(t)
i − x

(t)
i ) + C2U(0, 1)(g(t) − x

(t)
i ),

x
(t+1)
i = x

(t)
i + v

(t+1)
i ,

(4)

where U(0, 1) denotes a random value in interval [0, 1], and C1 and C2 are
learning factors. Algorithm 1 depicts the original PSO algorithm.

Interestingly, many surveys have recently revealed that the PSO algorithm
was used in numerous real-world applications [13, 16]. However, the presence
of the PSO algorithm in the software engineering research area is still in the
minority.

In the next Subsection, the proposed STAPSO algorithm is presented for the
Scrum task allocation problem.
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Algorithm 1 Pseudocode of the basic PSO algorithm

Input: PSO population of particles xi = (xi1, . . . , xiD)T for i = 1 . . . Np, MAX FEs.
Output: The best solution xbest and its corresponding value fmin = min(f(x)).
1: init particles;
2: eval = 0;
3: while termination condition not meet do
4: for i = 1 to Np do
5: fi = evaluate the new solution(xi);
6: eval = eval + 1;
7: if fi ≤ pBesti then
8: pi = xi; pBesti = fi; // save the local best solution
9: end if

10: if fi ≤ fmin then
11: xbest = xi; fmin = fi; // save the global best solution
12: end if
13: xi = generate new solution(xi);
14: end for
15: end while

3.2 STAPSO algorithm

The following Section depicts the process of a Scrum task allocation problem
using the STAPSO algorithm. For this problem, the following three modifications
were applied to the basic PSO algorithm:

– representation of individuals,
– design of fitness function, and
– constraint handling.

Representation of individuals Candidate solutions in the basic PSO al-
gorithm are represented as real-valued vectors x, whilst a Scrum task alloca-
tion problem demands an integer vector y symbolizing the effort of a particular
task. For that reason, mapping between representation of solutions in real-valued
search space to the solution in a problem space is needed. In a STAPSO, this
mapping is conducted in a similar manner as it was done for the problem of sport
training sessions’ planning [17]. A candidate solution in the proposed STAPSO
algorithm is also represented, using the real-valued vector xi = {xi0, . . . , xin}T
for i = 1 . . . n with elements xij ∈ [0, 1]. In order to obtain effort values for fitness
function calculation, firstly the permutation of task effort πi = {πi1, . . . , πin} is
mapped from the vector xi such that the following relation is valid:

xiπi0
< xiπi1

< . . . < xiπin
. (5)

Vector yi = {yi0, . . . , yin}T is determined from task description, Table 1. Table 2
presents an example of mapping the candidate solution xi via permutation of
task effort πi to the final task allocation.
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Table 1. Task description table (example)

Task ID Effort

0 3
1 2
2 4
3 3
4 5

Table 2. Candidate solution mapping

Dimension j

Elements i 0 1 2 3 4
Candidate solution xi 0.70 0.42 0.21 0.94 0.52
Permutation πi 3 1 0 4 2
Task allocation yi 3 2 3 5 4

Fitness function Fitness function is calculated according to Eq. 6 as follows:

f(x) = |
n days∑

j=0

(calculated effort per dayj)| (6)

where n days denotes the number of days, and calculated effort per day is cal-
culated effort for every day according to the constraint:

∀d ∈ {1, 2, . . . , n days},∀t ∈ {1, 2, . . . , n tasks(d)},
t∑

i=1

effort(i) ≤ opt d
(7)

where the variables d and t denote the current day of the Sprint, and the number
of tasks per day, respectively. Final effort per day is then calculated as the sum
of the tasks’ efforts, that should not exceed the value of the opt d (Eq. 1).

Constraint handling As discussed in previous Sections, there is sometimes a
particular order (dependency) of some tasks. In other words, it means that one
task must be completed before the beginning of another task. Most candidate
solutions that are obtained according to mapping in Table 2 are unfeasible, i.e.,
they violate the dependency conditions. In our case, unfeasible solutions are pe-
nalized. Algorithm 2 presents our solution for handling constraints, where the
function is violated() checks if the dependency condition is violated. If the de-
pendency condition is violated, the algorithm assigns a very high penalty [18]
value to this particle. Despite many constraint handling methods, our penaliza-
tion method behaves very well on the current problem. For that reason, we have
not tested the behavior of any other constraint handling methods yet [19].
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Algorithm 2 Constraint handling in STAPSO

1: violations = 0;
2: fitness = f(x);{calculated by Eq. 6}
3: for i = 1 to NumRules do
4: if is violated() then
5: violations = violations+ 1;
6: end if
7: end for
8: if violations > 0 then
9: fitness = violations ∗ 1000;

10: end if

4 Experiment

The experimental approach was used in order to show the power of the STAPSO
algorithm. Thus, Subsection 4.1 comprises parameter settings of the algorithm
and the computer environment, and Subsection 4.2 presents test data, along
with the constraints on Scrum tasks that were used in this study.

4.1 Setup

Experiments were conducted on an Intel XEON Z240 computer. STAPSO is
implemented in the Python programming language without using any special
software libraries. The algorithm ran on a Linux Ubuntu 16.04 operating system.
After the extensive parameter tuning, the following parameter settings were used
based on their best performance:

– population size Np: 75,
– dimension of the problem D: 60,
– number of function evaluations per run MAX FEs = 30000,
– total runs: 25,
– cognitive component C1 = 2.0,
– social component C2 = 2.0,
– velocity: [-4, 4],
– number of days: 10,
– number of Sprint: 1.

4.2 Test data and constraints

Table 4 presents test data that were used in this study. Test data for such
experiments is very hard to get due to the company policy of confidential data.
Thus, the source of test data is an internal project that was conducted within our
laboratory. In Table 4, Task ID denotes the identification number of a particular
task, while Effort symbolizes the effort of this task. In this study, the following
constraints were considered:

Ψ = {(T7, T3), (T6, T22), (T4, T58), (T33, T31)}.
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Thereby, Ψ denotes the implementation order of the tasks, i.e., task T7 must
be implemented before task T3, task T6 must be implemented before task T22,
etc. In the context of the algorithm, this means that all of the possible solutions
must obey all of the given constraints and provide legitimate task allocation also
considering Eq. 2 and Eq. 3.

5 Results

In the total of 25 runs, an optimal solution was found 20 times (i.e. success rate:
80%), meaning that no tasks were left behind for the next Sprint. In three cases
(12%), the algorithm did not allocate one task with the estimated effort of 1, and
in two cases (8%), the algorithm did not allocate one task estimated with the
effort of 2. We want to highlight that all constraints presented in Subsection 4.2
were satisfied in all runs. On average, an optimal solution was found after 5533
function evaluations.

Table 3 comprises an in-depth description of one optimal solution. The latter
presents the sequence of tasks’ implementation for one Sprint, which is described
with the Task IDs (column 2) and belonging tasks’ effort (column 3). Per each
day, the number of tasks and remaining effort is recorded, respectively.

Table 3. Example of task allocation from Table 4 (optimal solution)

Day Tasks allocated Tasks’ effort
Number Effort

of tasks remaining

1 4, 12, 15, 17, 21, 32, 42 5, 3, 1, 1, 1, 2, 2 7 0

2 43, 27, 49, 48, 58, 33 3, 3, 3, 1, 1, 4 6 0

3 51, 7, 50, 5 1, 5, 4, 5 4 0

4 24, 26, 45, 35, 57, 54, 25 2, 1, 2, 2, 4, 2, 2 7 0

5 18, 10, 29, 16 2, 5, 3, 5 4 0

6 6, 22, 8, 53, 31 5, 4, 3, 1, 2 5 0

7 28, 44, 19, 0, 30, 3 4, 2, 1, 2, 4, 2 6 0

8 1, 14, 20, 37, 40, 52, 23, 38 2, 2, 2, 1, 1, 3, 3, 1 8 0

9 56, 34, 41, 11, 2, 9, 13 2, 3, 1, 2, 1, 3, 3 7 0

10 36, 39, 46, 47, 55, 59 3, 2, 4, 2, 2, 2 6 0
∑ 60 150 60 0

Fig. 2 and Fig. 3 present the same proposed solution of the STAPSO al-
gorithm, where two tasks with the estimated effort of 1 were not allocated. A
non-optimal solution was chosen deliberately for easier explanation of the results
and deviations. Fig. 2 presents the solution in the form of the burndown chart,
and Fig. 3 shows allocated tasks per day of the Sprint.

In Scrum, a burndown chart is one of the most frequently used graphs to
present the current state of the work of the project [2, 20]. On the abscissa axis
(Fig. 2), days of the Sprint are displayed, and on the ordinate axis, the remaining
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Fig. 2. Burndown chart of non-optimal solution (chosen deliberately for easier expla-
nation of the results)

effort of the Sprint. The preparation of such a graph is carried out in several
stages. Firstly, the optimal line is drawn. The optimal line is calculated with
Eq. 2 and shows an ideal or optimal course of the implementation of the tasks.
In Fig. 2, this line is colored with red. As stated before, all tasks are estimated
with effort (see Table 4) and with their fulfillment, we can monitor remaining
effort in a Sprint. If we look at the first day of the Sprint in Fig. 2, we can
see that ideal effort completed per day is 15 (calculated with Eq. 1). Thus, the
Development Team should, on their first day, complete tasks with the sum of the
effort of at least 15. As we can see from Fig. 3, algorithm STAPSO for the first
day allocated 5 tasks with the estimated effort sum of 14, meaning that, after
the first day, the Development Team is one effort behind the optimal line (see
blue line). In a real-world scenario, we can witness lines that are similar to the
green line. From the latter, it is evident that the Development Team was behind
the optimal line for the first four days, and on day 3 (point A) they fulfilled
tasks with the effort sum of only 4. However, after the third day, the fulfillment
of tasks went very quickly, so in two days they caught up and were in front of the
optimal line on day five (point B). Point C shows that the progress has stopped
on day 8 (they were behind the optimal line again), and they stayed behind it
until the end of the Sprint.

In Fig. 3 the days of the Sprint show the allocated tasks given by the STAPSO
algorithm. As we have said in the description of Fig. 2, the optimal effort sum
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Fig. 3. Task allocation of non-optimal solution (chosen deliberately for easier explana-
tion of the results)

per day is 15 (maximum value of the ordinate axis). This sum is also the value
that the algorithm is trying to achieve per day. If we look at the results, on the
first day the STAPSO algorithm allocated five tasks, i.e., T1, T2, T4, T8, and
T12 (see Table 4), with the sum of effort of 14. On the second day, a sum of
effort of 15 is fulfilled with the tasks T20, T29, T41, T42, T43, T48, and T52,
etc. This kind of graph is beneficial for the Development Team and the Product
Owner, since they have allocated tasks from the beginning of the Sprint.

6 Conclusion

A novel algorithm STAPSO was implemented and tested successfully on a real
dataset. It offers a solution to the global problem of task allocation in the agile
software development. The STAPSO algorithm can be applied to all of the known
estimation techniques, e.g. number sizing, Fibonacci sequence, and T-shirt plan-
ning. Furthermore, it can be included in companies regardless of their size and
maturity degree.

In the design of the algorithm, there is still significant room for improvement.
In the future, we intend to study the impact of various constraint handling meth-
ods and variants of PSO on the behavior of the STAPSO algorithm. Hybridiza-
tion of STAPSO with any other well-established algorithms, e.g., Differential
Evolution is also a sparkling way for future research.
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Since we have not found any similar algorithms for Scrum task allocation that
are based on nature-inspired algorithms yet, we believe that this study could be
a stepping stone for more links between the vibrant agile software development
research area and optimization.
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Test data

Table 4. Test data

Task ID Effort Task ID Effort
T0 2 T30 4
T1 2 T31 2
T2 1 T32 2
T3 2 T33 4
T4 5 T34 3
T5 5 T35 2
T6 5 T36 3
T7 5 T37 1
T8 3 T38 1
T9 3 T39 2
T10 5 T40 1
T11 2 T41 1
T12 3 T42 2
T13 3 T43 3
T14 2 T44 2
T15 1 T45 2
T16 5 T46 4
T17 1 T47 2
T18 2 T48 1
T19 1 T49 3
T20 2 T50 4
T21 1 T51 1
T22 4 T52 3
T23 3 T53 1
T24 2 T54 2
T25 2 T55 2
T26 1 T56 2
T27 3 T57 4
T28 4 T58 1
T29 3 T59 2
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Julien Pelamatti1,3, Löıc Brevault1, Mathieu Balesdent1, El-Ghazali Talbi2,
and Yannick Guerin3

1 ONERA - The French Aerospace Lab, 91120 Palaiseau, France
2 INRIA Lille - Nord Europe, 59650 Villeneuve d’Ascq, France
3 CNES - Direction des Lanceurs Ariane, 75612 Paris, France

Abstract. Surrogate model based optimization is an increasingly popu-
lar tool for engineering design as it enables to optimize the performance of
complex systems at a limited computational cost. The working principle
of this approach consists in creating a surrogate model of the fitness and
constraint functions by relying on a limited amount of data, which is then
refined by adding data samples in the area of interest of the search space
determined according to a given criterion. Several techniques exist for the
surrogate model based optimization of continuous functions, however,
only few methods have been developed for mixed continuous/discrete
problems. In this paper, two different adaptations of the Efficient Global
Optimization algorithm for mixed continuous/discrete problems are pre-
sented and their performance are tested on different constrained analyt-
ical test-cases and aerospace engineering design problems.

Keywords: Mixed continuous/discrete variables, Surrogate model based
optimization, Constrained optimization

1 Introduction

Within the framework of system design, an optimization problem can involve
continuous and discrete decision variables. A common example of such a design
problem is the preliminary design of launch vehicles, which involves discrete ar-
chitectural and technological choices (e.g., type of propulsion, number of stages)
as well as continuous variables (e.g., sizing parameters). This type of design
problem is usually subject to a number of constraints (e.g., structural integrity,
target altitude and speed) which must be taken into account in order to obtain a
feasible design. Due to the possibly large computation time required to evaluate
the performance of the system, it is necessary to rely on optimization techniques
that require as few function evaluations as possible to converge towards the op-
timum, such as the Efficient Global Optimization (EGO) algorithm [2], which
relies on Gaussian process surrogate models [4]. The optimization is performed
through a refinement of the meta-models according to an infill criterion which
takes into account the predicted value and position of the problem optimum as
well as the uncertainty associated to the prediction. The original version of EGO
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was developed exclusively for functions depending on continuous variables and
applying it to a mixed variables problem would therefore require to separately
model each discrete category of the considered problem [3]. In this paper, two
adaptations of EGO for the optimization of problems depending simultaneously
on continuous and discrete variables are presented. Following this introduction,
the used Gaussian process surrogate modeling techniques for mixed variables
functions are described. Subsequently, the adaptation of EGO to the presence
of constraints and discrete variables is discussed. The performance of this novel
optimization algorithm is then tested on a number of constrained analytical test-
cases and aerospace engineering design problems. Finally, the conclusions that
may be drawn from the obtained results are presented.

2 Mixed continuous/discrete EGO

EGO is an optimization algorithm based on Gaussian process surrogate mod-
els which map the probability distribution of possible regression functions as
a function of the co-variance between the data samples [4]. In this paper, the
co-variance is defined as a function of a distance based spatial correlation be-
tween data samples. The first adaptation of Gaussian processes to mixed contin-
uous/discrete functions that is considered was proposed (with a slightly different
implementation) by M. Halstrup [1] and is based on an alternative definition of
distance between samples in the continuous/discrete search space known as the
Gower distance. In the Gower distance, the coordinates of two samples that are
being considered are compared dimension-wise. For the continuous dimensions,
the distance is proportional to the Manhattan distance, while for the discrete
variables the distance is a weighted binary value, depending on the similarity
between the variable values. This allows to rely on common distance based ker-
nels in order to determine the correlation between samples in the mixed search
space. In this paper, the the p-exponential correlation [4] is used. The second
adaptation of Gaussian processes to mixed continuous/discrete functions that is
presented in this paper is based on the idea of defining the correlation function
as a product of two separate terms, each one representing the influence of either
the continuous or the discrete variables of two considered data samples. Such a
correlation function is proposed by Q. Zhou et al. [6], as the product between a
distance based correlation function computed on the continuous variables and a
parameter characterizing the correlation between the discrete coordinates of the
two data samples. In order to ensure that the correlation matrix is valid and in-
vertible, the hyper-parameters characterizing the discrete term of the correlation
are computed as the elements of a matrix obtained through a so-called hyper-
sphere decomposition. Having adapted the definition of the correlation function
between samples in the search space to the presence of discrete variables, the
EGO algorithm can subsequently be applied by including the discrete variables
the considered function depends on in the set of parameters to be optimized
in order to determine the optimal data sample infill criterion, thus allowing to
optimize mixed continuous/discrete functions.
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In order to take into account the constraints the problem is subject to, in
this paper the considered function and its constraints are modeled separately.
Subsequently, data samples are added to refine both surrogate models. In order
to achieve this, the infill criterion is re-defined as the product between the EGO
infill criterion and the probability that the considered sample complies with the
given constraints, as described by M. Schonlau et al. [5]. This infill criterion is
adapted to the mixed continuous/discrete case by including the discrete variables
the considered function and the constraints depend on within the set of opti-
mization parameters. In this paper, this novel optimization algorithm is tested
on a number standard analytical test-cases as well as on launch vehicle design
related engineering problems such as the minimization of a thrust frame mass
and the minimization of a launch vehicle lift-off mass. The obtained results are
then compared with standard mixed-variable optimization techniques such as
the Genetic Algorithm (GA).

3 Conclusions

From the results obtained on analytical test-cases and aerospace design problems,
it is shown that the adaptation of the EGO algorithm for mixed variable prob-
lems tends to converge to the considered problem optimum with considerably
fewer function evaluations when compared to standard algorithms. Depending
on the problem, the reduction of required function evaluations ranges from one
to two orders of magnitude. This novel optimization algorithm results therefore
promising for the design of complex systems, were the computational cost is a
limiting element of the performance evaluation process.
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Abstract. This article presents single and multiobjective evolutionary
approaches for solving the clustering problem with unknown number of
clusters. Simple and ad-hoc operators are proposed, aiming to keep the
evolutionary search as simple as possible in order to scale up for solving
large instances. The experimental evaluation is performed considering
a set of real problem instances, including a real-life problem of analyz-
ing biomedical information in the Parkinson’s disease map project. The
main results demonstrate that the proposed evolutionary approaches are
able to compute accurate trade-off solutions and efficiently handle the
problem instance involving biomedical information.

Keywords: clustering, biomedical information, multiobjective

1 Introduction

The clustering problem aims at grouping a set of elements in such a way that
elements in the same group (cluster) are more similar to each other than to the
elements in other clusters [1]. Similarity between elements is evaluated according
to a predefined similarity metric to be maximized. Clustering is one of the most
important unsupervised learning problems, which models many other problems
dealing with finding a structure in a given set of data.

In particular, biomedical research demands dealing with a large number of
concepts linked by complex relationships, which are often represented using large
graphs. In order to process and understand these knowledge bases, researchers
need reliable tools for visualizing and exploring large amounts of data conve-
niently. In order to get a deep understanding of such knowledge bases, concepts
with similar characteristics need to be accurately grouped together.

Clustering is an NP-hard optimization problem [2] that has been thoroughly
studied in the last 30 years [3]. Heuristics and metaheuristics [4] have been

71 sciencesconf.org:bioma2018:181072



applied to solve the clustering problem efficiently. Among them, evolutionary
algorithms (EAs) have proven to be accurate and powerful methods [5, 6].

This article addresses two formulations of the clustering problem, a first one
in which the number of clusters is known in advance, and a multiobjective vari-
ant which simultaneously maximizes the similarity between elements in the same
cluster and minimizes the number of clusters. Three EAs are presented, two for
the single objective and one for the multiobjective clustering problem. The pro-
posed EAs are compared against several methods from the related literature. The
evaluation focuses on a large problem instance from the Parkinson’s disease map
project [7], a research initiative that proposes building a knowledge repository
to describe molecular mechanisms related to that condition [8]. The repository
compiles literature-based information about Parkinson’s disease and organizes
the main concepts and contents in an easy to explore and freely accessible map,
including experimental data, drug targets and other concepts.

The article is organized as follows. Section 2 presents the single and multiob-
jective clustering problem formulation and reviews related works on heuristics
and metaheuristics applied to the clustering problem. The proposed EAs are
described in Section 3 and the experimental evaluation is reported in Section 4.
Finally, Section 5 presents the conclusions and the main lines for future work.

2 Clustering problem and related work

This section defines the clustering problem in both its single and multiobjective
variants and reviews related works.

2.1 Problem formulation

Let us consider the following elements:

– The set E = {e1, e2, ..., en} of elements to be grouped.
– The function s : E ×E → [0, 1]; s(ei, ej) is the similarity between ei and ej .

The following conditions hold: ∀ei, ej , s(ei, ej) = s(ej , ei) and s(ei, ei) = 1.
– An integer k > 0, which indicates the number of clusters to consider for

grouping elements (only for the single-objective version of the problem).

The clustering problem consists in assigning the elements in E to a set of
groups (clusters) G = {G1, ..., Gk}; Gi = {ci} ∪ {em/s(em, ci) ≤ s(em, cj)∀em ∈
E, cj , ci ∈ C, i 6= j}; C ⊆ E, |C| = k is the set of centers of the groups. The
following properties hold: a) cluster index in [1, k]) ∀(i, j), i 6= j : 1 ≤ i, j ≤ k,
and b) clusters are disjoint sets Gi ∩Gj = ∅.

The goal of the single objective version of the problem is to maximize the
total similarity metric (TS) defined in Equation 1.

max TS =
∑

ei∈E
max
ci∈C

s(ei, ci) (1)

In the multiobjective version of the problem, the goal is to simultaneously
maximize the value of TS and minimize the number of clusters k.
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2.2 Related work

Many articles have presented heuristic and metaheuristic methods applied to
the clustering problem. Early works considered the single objective version of
the problem, based on minimizing the distance or maximizing similarity.

Das et al. [9] reviewed the application of metaheuristics for clustering prob-
lems. Trajectory-based metaheuristics offer limited problem solving capabilities,
mainly due to scalability issues when solving large problem instances. Deng and
Bard [10] applied GRASP for the Capacitated Clustering Problem, which pro-
poses grouping elements in clusters, where each cluster has capacity constraints
(minimum and maximum number of elements). GRASP was able to find opti-
mal solutions for the problem instances with 30 and 40 nodes, and outperformed
solutions found using CPLEX when using an execution time limit of one hour.

Early proposed EAs did not follow an explicit multiobjective approach. Sheng
and Liu [6] compared k-medoids, local search, and Hybrid K-medoid Algo-
rithm (HKA) over two datasets (517 elements/10 groups, and 2945 elements/30
groups). HKA obtained the best results on the largest problem instance and
slightly better results for the small test problem. The EA by Cowgill et al. [11]
optimized clustering metrics defined in terms of external cluster isolation and
internal cluster homogeneity, improving over hierarchical clustering algorithms
considering an internal criterion. Bandyopadhyay and Maulik [12] proposed an
EA for clustering with a number of clusters not defined a priori, to analyze
several clustering metrics.

Multiobjective EAs (MOEAs) for clustering have been presented in the book
by Maulik et al. [13], most of them focused on optimizing two similarity met-
rics, thus studying different features of the data to analyze. The multiobjective
approach by Ripon et al. [14] considered intracluster variation and intercluster
distance, without assuming the number of clusters. The experimental analysis
over problems with up to 3000 elements, nine classes, and two features, showed
improved solutions over a custom NSGA-II.Handl and Knowles [15] proposed
multiobjective clustering with automatic k determination (MOCK), consider-
ing objective functions based on compactness (deviation) and connectedness of
clusters. These are conflicting objectives because the overall deviation improves
when using more clusters, but the connectivity decreases. MOCK showed good
behavior and scalability when compared with single-objective clustering algo-
rithms. Korkmaz et al. [16] presented a Pareto-based MOEA to find a set of
non-dominated clusters considering intracluster variation and the number of
clusters. The experimental evaluation was performed over two small standard
datasets (150 and 75 elements, with only two attributes), but no numerical re-
sults or multiobjective optimization analysis is reported.

Most of the previous works have proposed ad-hoc EAs to address the clus-
tering problem and few of them have solved multiobjective variants. This article
contributes with simple EAs and an explicit MOEA designed to scale properly
for solving large problem instances, and we focus on a real-life instance consider-
ing biomedical information in the context of the Parkinson disease map project.
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3 Evolutionary algorithms for clustering

This section describes in detail the single and multiobjective EAs proposed to
tackle the clustering problem.

3.1 Single objective EAs

Fitness function. The fitness function computes the sum of similarities between
each element and its most similar center, as presented in Section 2.1.

Solution encoding. Two solution encodings are proposed and evaluated. Binary
encoding: a solution is represented as a binary vector of length n (the num-
ber of elements to be grouped). Each position in the vector represents whether
the corresponding element is a group center (1) or not (0). Integer encoding:
each solution is a vector of k integers in [1, N ], representing the set of cluster
centers. Numbers only appear once, as the k clusters must have different centers.

Crossover operators. Two crossover operators were implemented for the binary
encoding: Single Point Crossover (SPX) randomly selects a crossover position
and exchanges the genes after the crossover point between both parents. Two-
Point Crossover (2PX) randomly selects two crossover positions and exchanges
the genes located between these two points.

For the integer encoding, three crossover operators were implemented: SPX,
Generalized Cut and Splice (GenC&S), and Hybrid Crossover (SPX-GenC&S).
GenC&S is a variant of Cut and Splice (C&S) [17] for the clustering problem,
to preserve useful features of the information in both parents (Algorithm 1).
GenC&S selects a random cutting point cp on one parent and a random integer
s ∈ [0, k]. Two lists are created, sorted by similarity with the element on position
cp in parent1: LP1 (elements on parent1) and LP2 (elements in parent2). The
first s elements in LP1 are copied to offspring1 and the k−s remaining elements
are copied from LP2, if their similarity to elements already copied to offspring1 is
smaller than the input parameter ε. If less than k centers are copied to offspring1,
the solution is completed with randomly selected centers. SPX-GenC&S uses
a single random number p instead of cp and s. Elements before p in parent1
are copied to offspring1 (like in SPX), and the k − p remaining elements in
offspring1 are copied from parent2, if their similarity to elements already copied
to offspring1 is smaller than ε (like in GenC&S). If less than k centers are copied
to offspring1, the solution is completed with randomly selected centers.

Mutation operators. Five mutation operators were implemented. For binary en-
coding, Bit Flip Mutation changes encoded values by the opposite binary value;
Add Mutation changes data points to centers; and Delete Mutation changes cen-
ters to data points. For integer encoding, One Gene Mutation changes elements
to another that is not included in the solution (randomly selected according to
a uniform distribution in the set E) and Adapted One Gene Mutation changes
an element in the encoding to the most similar element, found by applying the
following search: all elements in the solution are processed, and the similarity to
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Algorithm 1 GenC&S crossover for the clustering problem (integer encoding)

1: Input: parent1, parent2, ε; Output: offspring1
2: cp = rand(0,k)
3: s = rand(0,k)
4: cp element = parent1[cp]
5: offspring1.add(cp element)
6: LP1 = sortAscending(parent1,cp element)
7: LP2 = sortAscending(parent2,cp element)
8: for i = 0 to s− 1 do . Copy the first s elements from LP1 to offspring1
9: offspring1.add(LP1[i])

10: end for
11: for j = 0 to k − s do . Copy the first N − s elements from LP2 to offspring1
12: if similarity(LP2[j],offspring1)< ε then . not too close
13: offspring1.add(LP2[j]) . already in offspring1
14: end if
15: end for
16: while offspring1.length() < k do . Complete with random elements
17: new center = rand(0,N)
18: offspring1.add(new center)
19: end while

the element being mutated is evaluated. The best similarity value (γ) is stored
and the new center is selected to have a similarity less than γ.

Corrective function. Some evolutionary operators do not guarantee to pre-
serve the number of centers in a solution. A simple corrective function is applied
both for binary and integer encodings. For binary encoding, if the number of
1s in the solution is not k, random centers are added or deleted until the solu-
tion becomes feasible. For integer encoding, if the same element appears more
than once in the vector, each repeated element is replaced with another chosen
randomly (uniform distribution) among elements that are not already centers.

Population initialization. The individuals in the population are randomly
generated following a uniform distribution in {0, 1} (binary encoding) and a
uniform distribution in the set of centers C (integer encoding). The initialization
procedure generates feasible solutions by applying the corrective function to each
individual in the initial population.

3.2 Multiobjective EA

A variant of NSGA-II [18] was implemented to solve the multiobjective variant
of the clustering problem. Following an incremental approach, the encoding and
evolutionary operators that achieved the best results in the comparative analysis
of the single objective EA for the problem were used in the proposed NSGA-II:
binary encoding, SPX, and Delete Mutation.

In the multiobjective problem, the solution with all genes set to 0 is not
feasible, since it does not represent any grouping at all. To avoid this situation,
the corrective function randomly adds a center to the solution. The initial pop-
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ulation is randomly generated following a uniform distribution in [0, 1] and the
corrective function is applied to the generated individuals.

4 Experimental evaluation

This section describes the evaluation of the proposed EAs for clustering.

4.1 Problem instances

A total number of 13 problem instances were used to evaluate the proposed EAs.
These instances correspond to clustering problems arising in different fields of
study, including two instances that model the Parkinson’s disease map:

– Instance #1 consists of hydrometric data from 46 basins in Uruguay [19].
– Instances #2 to #8 and #10 to #12 are from the Knowledge Extraction

based on Evolutionary Learning dataset [20], a data repository for classifi-
cation problems. These instances have between 80 and 846 elements each.

– Instances #9 and #13 contain data from the Parkinson’s disease map, which
visually represents all major molecular pathways involved in the Parkinson
disease pathogenesis. Instance #9 has 801 elements. Instance #13 has 3056
elements and it is used to test the performance of the multiobjective approach
on a large problem instance containing biomedical information.

4.2 Experimental configuration and methodology

Development and execution platform. The proposed EAs were developed using
ECJ [21], an open source framework for evolutionary computation in Java. Ex-
periments were performed on an Intel Core i5 @ 2.7GHz and 8 GB of RAM.

Results evaluation The results computed by the proposed EAs are compared
against clustering algorithms from the literature in terms of the objective func-
tion (total similarity) and in terms of the relative hypervolume (RHV) metric for
the multiobjective variant of the clustering problem. RHV is the ratio between
the volumes (in the objective functions space) covered by the computed Pareto
front and the volume covered by the true Pareto front. The ideal value for RHV
is 1. The true Pareto front—unknown for the problem instances studied—is ap-
proximated by the set of non-dominated solutions found in each execution.

The algorithms used in the comparison are:

– k-medoids [22], a classic partitional method related to k-means. Clusters
are built to minimize the distance between points and the center of the
corresponding cluster, according to a given distance metric.

– Linkage, an agglomerative hierarchical clustering technique based on build-
ing clusters by combining elements of previously defined clusters. A distance
function evaluates a relevant similarity metric for the problem and different
linkage implementations use different distance functions. The Matlab im-
plementation of single linkage (nearest neighbor), which uses the smallest
distance between objects in the two cluster, in the results comparison.
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– Local Search [6], combining k-medoids and an exhaustive search performed
for each cluster. Starting from a randomly selected set of centers, the set of
p nearest neighbors is found for each center. A local search is performed over
these sets to find a new center that minimizes the distance with all elements.
The search ends when no center is changed in two consecutive iterations.

– Greedy, which builds clusters iteratively, taking a locally optimal decision in
each step. Starting from a randomly selected center, in each step searches
for the element with the lowest similarity with the solution already built.
This element is included in the solution as a new center. All clusters are
recomputed and the procedure is applied until building k clusters.

– Hybrid EA, combining an EA and the local search by Sheng and Liu [6]
(Algorithm 2). The hybrid EA uses binary encoding, random initialization,
tournament selection, Mix Subset Recombination, and Bit Flip Mutation.

Algorithm 2 Generic schema of the hybrid EA for the clustering problem

1: Initialize k centers randomly
2: while not stopping criterion do
3: [parent1, parent2] = TournamentSelection(P )
4: if rand(0,1) > pC then
5: [offspring1, offspring2] = Mix Subset Recombination(parent1, parent2)
6: end if
7: [offspring1, offspring2] = Bit Flip Mutation(pM )
8: if rand(0,1) > pLS then
9: [offspring1, offspring2] = Local Search()

10: end if
11: end while
12: return best solution found

Statistical analysis. Thirty independent executions of each algorithm were
performed over each problem instance to have statistical confidence. For each
problem instance, the best and the average fitness value (for the single objective
problem) and the average multiobjective metrics (for the multiobjective prob-
lem) are reported. The Kolmogorov-Smirnov test is applied to each set of results
to assess if the values follow a normal distribution. After that, the non-parametric
Kruskal-Wallis test is applied to compare the results distributions obtained by
different algorithms. A confidence level of 95% is used for both statistical tests.

4.3 Single objective clustering problem

Parameter settings. The parameter values of each algorithm were configured
based on preliminary experiments and suggestions from related works:

– Single objective EAs: population size (pop)= 100, crossover probability (pC)
= 0.75, mutation probability (pM ) = 0.01, tournament size = 2, and stopping
criterion of 10000 generations.

– k-medoids: the algorithm stops when the cluster centers remain unchanged
in consecutive iterations.
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– Local search: size of the search neighborhood = 3 and the stopping criterion
is the same as for k-medoids, as recommended by Sheng and Liu [6].

– Hybrid EA: pop = 30, pC = 0.95, pM = 0.02, pLS = 0.2, neighborhood size
= 3, tournament size = 2, and stopping criterion of 10000 generations.

Comparison of evolutionary operators. For the binary encoding, two crossovers
and three mutations were proposed, generating six possible combinations: SPX
and Bit Flip Mutation (SPX-bit), SPX and Add Mutation (SPX-add), SPX
and Delete Mutation (SPX-del), 2PX and Bit Flip Mutation (2PX-bit), 2PX
and Add Mutation (2PX-add), and 2PX and Delete Mutation (2PX-del). Ex-
perimental results showed that SPX-del performed better on small problem in-
stances, outperforming the other combinations of evolutionary operators. On
medium sized instances #5 and #6, SPX-bit computed the best results, while
on large instances 2PX-del achieved the best results. Therefore, the rest of the
experimental analysis of the single objective EA using binary encoding focused
on these three combinations of evolutionary operators.

For the integer encoding, three crossover operators and two mutations were
presented, generating six possible combinations: SPX and One Gene Mutation
(SPX-One), SPX and Adapted One Gene Mutation (SPX-Adapt), SPX-GenC&S
Crossover and One Gene Mutation (SPXGCS-One), SPX-GenC&S Crossover
and Adapted One Gene Mutation (SPXGCS-Adapt), GenC&S Crossover and
One Gene Mutation (GCS-One), and GenC&S Crossover and Adapted One
Gene Mutation (GCS-Adapt). Results showed that SPX-One computed the best
results in 7 instances and GCS-One in 5 instances, both outperforming the
other combinations. Therefore, the rest of the experimental analysis of the single
objective EA using integer encoding focused on these two combinations.

Comparison of solution encodings. Table 1 reports the average similarity results
computed on 30 independent executions of the proposed EA using binary and
integer encoding and the evolutionary operators that achieved the best results
in the previous analysis.

Table 1: Average similarity using different encodings and evolutionary operators.

#I
integer encoding binary encoding

SPX-One GCS-One SPX-bit SPX-del 2PX-del

#1 18.66 18.66 18.66 18.66 18.66
#2 1.96 1.96 1.96 1.96 1.96
#3 12.42 12.44 12.27 12.46 12.46
#4 16.43 16.41 15.93 16.50 16.50
#5 78.35 78.16 78.61 78.51 78.42
#6 116.18 116.39 116.45 115.69 115.34
#7 54.71 54.68 54.80 54.98 54.98
#8 63.27 63.30 61.10 63.42 63.43
#9 673.57 656.56 633.91 675.20 675.20
#10 37.77 36.49 35.88 38.22 38.22
#11 235.33 229.58 221.17 236.11 236.11
#12 32.89 32.08 31.20 33.23 33.23
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Results indicate that the binary encoded EA using SPX-del and 2PX-del
significantly outperformed the results computed using integer encoding and SPX-
bit. There is no significant difference when using SPX-del and 2PX-del, and for
simplicity, the rest of the experimental evaluation was performed using SPX-del.

Comparison against other algorithms. The proposed EA with binary encoding,
SPX, and delete mutation was compared against the baseline algorithms. Table 2
reports the average similarity computed over 30 independent executions of each
algorithm for the 12 problem instances (the best results are marked in bold). The
Kolmogorov-Smirnov test was performed on the results’ distributions. In most
cases, the test allowed rejecting–with 95% confidence–the null hypothesis that
the results follow a normal distribution. Therefore, the Kruskal-Wallis test was
used to compare the results’ distributions computed by each EA (the p-value is
reported in the last column). Kruskal-Wallis allows rejecting the null hypothesis
that the results computed by all algorithms follow the same distribution.

Table 2: Comparison of average similarity against other algorithms.

instance greedy linkage k-medoids local search hybrid EA SPX-del p-value K-W

#1 7.28 17.01 17.03 15.49 18.66 18.66 < 10−15

#2 1.12 1.65 1.95 1.70 1.96 1.96 < 10−15

#3 5.77 10.18 12.14 10.50 12.45 12.46 < 10−15

#4 7.41 14.04 16.00 13.23 16.22 16.50 < 10−15

#5 47.69 76.08 76.47 69.11 78.62 78.51 < 10−15

#6 83.61 109.68 116.30 108.86 116.45 115.69 < 10−15

#7 29.31 50.77 54.98 41.68 54.98 54.98 < 10−15

#8 31.81 62.25 62.51 52.99 63.24 63.42 < 10−15

#9 499.54 523.19 667.94 615.64 661.48 675.20 < 10−15

#10 22.90 30.61 37.09 32.94 36.73 38.22 < 10−15

#11 170.65 198.75 236.10 205.96 229.56 236.11 < 10−15

#12 22.80 27.02 32.85 28.56 33.10 33.23 < 10−15

The proposed EA outperformed all other algorithms, computing the best
average results in 10 instances. Improvements were up to 9.5% over k-medoids
and 156.2% over greedy. The proposed EA also improved over Linkage in up to
29.1% and over the local search on of 31.9%. Finally, the improvements against
the hybrid algorithm are smaller. In the best case (instance #10) the proposed
EA outperformed the hybrid EA in up to 4.0% (2.3% on average).

4.4 Multiobjective clustering problem

Parameters setting. The parameters of the proposed MOEA were defined based
on preliminary experiments: pop = 100, pC = 0.75, pM = 0.01, tournament of
size 2, and a stopping criteria of 1000 generations.

Numerical results. The best EA for the single objective clustering problem
(i.e., using SPX and delete mutation) and k-medoids were used to compare the
NSGA-II results. 30 independent executions of each algorithm were executed,
changing the number of clusters for the single objective algorithms.

79 sciencesconf.org:bioma2018:181072



Figures 1 and 2 show sample Pareto fronts computed by the proposed MOEA
and the best solutions computed by k-medoids and in 30 independent executions
of the single objective EA using different numbers of clusters. These are repre-
sentative results for the set of problem instances solved.
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Fig. 1: Pareto fronts for instance #4
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Fig. 2: Pareto fronts for instance #6

Results showed that for small number of clusters there is no significant differ-
ence in the solutions computed by EA and MOEA. Both evolutionary approaches
improve over k-medoids. As the number of groups increases, the MOEA is able
to found solutions with better similarity values than the single objective EA, and
both significantly improves over the k-medoids results. In addition, the MOEA
is able to obtain a Pareto front of solutions with different trade-off values in
a single execution, while several executions (each one for a different number of
clusters) are needed for the single objective EA and k-medoids. Therefore, the
MOEA is useful for a decision-maker to be able to visualize several groupings
with different trade-offs between the problem objectives and select the one that
better captures the problem features. This is especially relevant in the case of
biomedical information, where the number of clusters is particularly difficult to
define a priori for a given dataset.

The RHV results over 30 independent executions, reported in Table 3, indi-
cated that the proposed MOEA is robust and computes accurate Pareto fronts
for the problem instances studied. The average RHV was 0.99, the maximum dif-
ference from the ideal RHV was 0.02 (instances #6 and #12), and the optimum
value of 1.00 was achieved for three problem instances.

Table 3: RHV values obtained by the proposed algorithms.

MOEA EA k-medoids
average best average best average best

0.99 1.00 0.96 1.00 0.83 0.92

Regarding the problem instances from the Parkinson’s disease map, the pro-
posed EAs allowed to compute accurate configurations that provide different
trade-offs between the problem objectives. Using the evolutionary approaches,
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several new possible clusterings have been found. These clusters provide novel
promising information, different to the current manually built solutions (see the
project website at http://wwwen.uni.lu/lcsb/research/parkinson s disease map).

Overall, considering the complete set of problem instances, EA and MOEA
were able to improve over k-medoids 15.8% and 14.1% in average (respectively),
and up to 31.4% and 27.0% in the best case. The best improvements were ob-
tained in the problem instances with larger number of elements, clearly demon-
strating the good scalability behavior of the proposed evolutionary approaches.
The best improvement of EA over MOEA was 8.7% and the best improvement
of MOEA over EA was 4.4%.

5 Conclusions and future work

This article presented evolutionary algorithms applied to the clustering problem
in its single and multiobjective variants, with unknown number of clusters. This
is a very important problem in many research areas that involve dealing with
large volumes of information to be categorized and grouped.

The proposed evolutionary algorithms were conceived to apply simple and
ad-hoc operators, trying to keep the search as straightforward as possible in
order to scale up for solving large instances of the clustering problem.

The experimental evaluation was performed considering a set of real prob-
lem instances, including one problem consisting of biomedical information in the
context of the Parkinson disease map project. The main results from the exper-
imental analysis indicate that the proposed evolutionary algorithms are able to
compute accurate solutions for the problem instances studied. The evolution-
ary approaches outperform several algorithms of the related literature. In the
single objective clustering problem, the proposed evolutionary algorithm is able
to compute the best average result in 10 out of 12 problem instances. For the
multiobjective clustering problem, the proposed evolutionary algorithm is able
to compute accurate Pareto fronts, which offer decision-makers solutions with
different trade-offs between the problem objectives.

The evolutionary approach is especially helpful for organizing biomedical
information in the case of the Parkinson’s disease map project. The proposed
EAs are able to find accurate organizations for the data, which provide different
trade-offs between the problem objectives and allow capturing different features
of the information. The computed solutions provide new promising clustering
patterns to be examined along the existing ones, manually built by experts.

The main lines of future work include extending the experimental analysis
considering datasets from different fields of study. Additionally, a parallel model
for EAs should be considered to both reduce execution times and handle bigger
datasets. Finally, the possibility of combining the proposed evolutionary algo-
rithms with visualization tools should be studied, in order to help researchers
analyze the information in a more intuitive way.
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Abstract. We introduce the ensemble of Kriging with multiple kernel
functions guided by cross-validation error for creating a robust and ac-
curate surrogate model to handle engineering design problems. By using
the ensemble of Kriging models, the resulting ensemble model preserves
the uncertainty structure of Kriging, thus, can be further exploited for
Bayesian optimization. The objective of this paper is to develop a Krig-
ing methodology that eliminates the needs for manual kernel selection
which might not be optimal for a specific application. Kriging models
with three kernel functions, that is, Gaussian, Matérn-3/2, and Matérn-
5/2 are combined through a global and a local ensemble technique where
their approximation quality are investigated on a set of aerodynamic
problems. Results show that the ensemble approaches are more robust
in terms of accuracy and able to perform similarly to the best performing
individual kernel function or avoiding misspecification of kernel.

1 Introduction

The computationally expensive nature of many real-world engineering optimiza-
tions hinders the crude of use of evolutionary algorithms (EA) and other meta-
heuristics for obtaining highly optimized designs. To this end, surrogate models
are now commonly deployed to act as a replacement for black-box functions
in order to accelerate the optimization process. There are basically two frame-
works to apply surrogate models, that is, to utilize them either as a global or
local surrogate model. Global surrogate models are particularly useful when the
number of design variables is low to moderate under the constraint of a limited
computational budget. On the other hand, local surrogate models are typically
used under the condition of high-dimensionality and moderate computational
budget, such as to assist the local search for memetic algorithm [1][2]. For a
comprehensive review of this topic, readers are referred to Jin [3] and Viana et
al. [4].

Kriging is one of the most widely used types of surrogate model for approx-
imating engineering functions. One powerful aspect of Kriging models is that
they provide a measure of estimation error that could be used to guide Bayesian
optimization or error-based refinement in order to improve the approximation
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quality [5]. The most widely used kernel function for constructing Kriging mod-
els in the context of engineering design is the Gaussian kernel function. On the
other hand, Stein recommends that Matérn kernel function should be used in-
stead of Gaussian since the smoothness of Gaussian function is unrealistic for
many real-world processes [6]. It is worth noting that the best kernel function
is highly problem dependent; therefore, it is of utmost importance to correctly
deploy a proper kernel for optimum approximation accuracy.

One approach to combine or take the best from multiple surrogate models
is to perform an ensemble of surrogate models [7][8] [9] [10] [11]. Traditionally,
various surrogate models such as radial basis function (RBF), Kriging, and sup-
port vector regression are combined together, which results in the inapplicability
of Bayesian optimization (e.g., efficient global optimization [5]). Bayesian opti-
mization can be performed with the ensemble model if each of the constituent
models possesses an uncertainty structure. In this paper, we propose to combine
multiple Kriging models with multiple kernel functions. The advantage of the
ensemble of Kriging models with various kernel functions is that the uncertainty
structure is still conserved. We tested the proposed framework on a set of aero-
dynamic problems using various ensemble methods. In this paper, we limit the
research scope to only analyzing the approximation accuracy of the ensemble
Kriging models and compared them to those with single kernel function.

Note that the mixture of Kriging with kernel function is not totally a new
idea; in fact, this idea was first proposed by Ginsbourger et al. [12]. Ginsbourger
et al. approach uses the combination of Gaussian and exponential kernel func-
tion and mix them globally with Akaike weights; while in this paper, we utilize
the cross-validation (CV) error to mix the Kriging model with Gaussian and ad-
vanced Matérn kernel function using both the global and local ensemble. More-
over, Ginsbourger et al.’s method was only tested on Branin function while we
directly used engineering functions in our study.

2 Ensemble of Kriging

2.1 Kriging model

We are interested in approximating a black box function y = f(x) with a Kriging
surrogate model, where x = {x1, x2, . . . , xm} and m is the dimensionality of the
decision variables. The Kriging approximation is modeled as a realization of a
stationary Gaussian process Y (x) reads as

Y (x) =
P−1∑

i=0

αiΨi(x) + Z(x), (1)

where Ψ(x) = {Ψ0(x), . . . , ΨP−1(x)} is a collection of regression polynomial
functions, α = {α0(x), . . . , αP−1(x)} is the vector of regression coefficients, and
Z is a stochastic process. In this paper, we use the ordinary Kriging which
assumes that the trend is a constant Ψ0.
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One building block of Kriging is the covariance function which represents
the similarity between two input points in the design space. There are several
choices to model this similarity using different types of kernel function. In this
paper, we opt for the Gaussian and Matérn class function due to their robustness
and popularity in various applications. We do not opt for the exponential func-
tion since based on our experiment in aerodynamic functions, it did not yield a
satisfactory accuracy. These kernel functions are explained in detail below.

Gaussian The Gaussian kernel function is defined as

R(h, θ) = exp

(
−

m∑

k=1

(h
θ

)2
)
, (2)

where θ = {θ1, . . . , θm} are the vector of hyperparameters that needs to be
estimated and h =

∣∣x− x′
∣∣.

Matérn class The general form of Matérn kernel function is expressed as

R(h, θ, ν) =
1

2ν−1Γ (ν)

(
2
√
ν
|h|
θ

)
Kν
(

2
√
ν
|h|
θ

)
, (3)

where ν ≥ 1/2 is the shape parameter, Γ is the Gamma function, and Kν is the
modified Bessel function of the second kind.

For ν = 3/2, the formulation of Matérn kernel function is defined as

R(h, θ, ν = 3/2) =

(
1 +

√
3|h|
θ

)
exp

(
−
√

3|h|
θ

)
, (4)

while for ν = 5/2 is defined as

R(h, θ, ν = 5/2) =

(
1 +

√
5|h|
θ

+
5h2

3θ2

)
exp

(
−
√

5|h|
θ

)
. (5)

The Matérn−3/2 and Matérn−5/2 are two forms that are widely used to model
real-world processes. We, therefore, used these two forms of Matérn kernel func-
tion in our study and compare it with the standard Gaussian.

A set of n observations points X = {x(1), . . . ,x(n)} and the responses y =
{y(1), . . . , y(n)} = {f(x(1)), . . . , f(x)(n)} are collected first in order to create a
Kriging surface. As opposed to the majority of the types of surrogate model,
Kriging allows the computation of both the prediction ŷ(x) and the mean-
squared error ŝ2(x).

The ordinary Kriging prediction for an arbitrary input variable reads as

ŷ(x) = µKR + r(x)TR−1(y − 1), (6)

with the mean-squared error of the Kriging prediction ŝ(x) reads as:

ŝ2(x) = σ2
(
1− (r(x)TR−1r(x)) +

(
1− 1TR−1r(x)

)2(
1TR−11

)−1)
. (7)
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Here, R is the n×n matrix with the (i, j) entry is corr[Z(x(i)), Z(x(j))], r(x) is
the correlation vector between x and X whose (i, 1) entry is corr[Z(x(i)), Z(x)],
and 1 is the vector of ones with length n. As we can see from this formulation,
the choice of kernel function enters the formulation through R and R(x). In this
paper, we opt for the standard technique of maximizing the likelihood function
to determine the hyperparameters. We do not go too much into details of the
Kriging method; readers are referred to other literatures such as [5][13].

Since the determination of a proper kernel function is not trivial, we advocate
the use of the ensemble of Kriging models with various kernel functions instead
of choosing just one specific kernel. We hypothesized that this would improve the
robustness and accuracy of Kriging models while still preserving the uncertainty
structure through the law of total expectation and total variance [12].

2.2 Ensemble of Kriging models

Assuming that we possess K different surrogate models, the general form of the
ensemble of surrogate models reads as

f̂ens(x) =

K∑

i=1

wi(x)f̂i(x) (8)

where f̂1(x), . . . , f̂K(x) are K surrogate models to be combined into one model
and w(x) = {w1(x, . . . , wi(x)} are the weights that define the contribution of
each surrogate model to the ensemble function.

To perform the ensemble of surrogates, we need the information of the CV

error, i.e., e for each Kriging model. We firstly define ei = {e(1)i , . . . , e
(n)
i }, where

e(j) = y(x(j)) − ŷ(−j)(x(j)) is the CV error for sample j with the sample j is
removed from the experimental design, as the CV errors for surrogate i. For
Kriging models, the CV error can be obtained analytically without the need to
construct Kriging n times [14]. The simplest approach is to directly select the
Kriging model with the lowest CV error, where in this paper we opt for the
root-mean-squared error (RMSE) to compute the CV error for each surrogate.
However, as argued by Viana et al. [8], the ensemble of surrogate models is the
better approach since it uses all information from each constituent surrogate
model instead of directly choosing the best one in terms of the CV error.

There are two techniques to ensemble the function, that is, the global and
local ensemble approach which are explained below.

Global ensemble The global ensemble approach employs a constant weight
for each surrogate model in the range of the design space. In this paper, we opt
for Acar and Rohani’s approach [9] to construct the global ensemble. Here, the
constant weight w is found by solving the following minimization problem

min
w

MSEens = E
(
e2WAS(x)dx

)
= wTCw, (9)
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where MSEens is the mean squared error of the global ensemble, C is the matrix
of CV error at sample points for all surrogate models, and e2WAS is the mean
squared error of the weighted average surrogate at a specific point. Following
Viana et al.’s suggestion [8], we only used the diagonal matrix of C to compute
w = {w1, w2, . . . , wK} using Lagrange multipliers.

Local ensemble One downside of the global ensemble approach, in spite of
its simplicity, is its inability to cope with the locality of the response surface.
There are situations where Kriging with one type of kernel function is accurate
in a certain region while another kernel is more suitable in other regions of the
design space. To this end, the local ensemble is probably more suitable since it
allows a non-constant weight function to be used. In this paper, we opt for Liu
et al.’s approach [11] which originally proposed the method for creating the local
ensemble of radial basis function models; readers are also referred to this paper
for a more detail explanation about the method. Using Liu et al.’s approach, the
weight for surrogate j at a certain design point is calculated by

wj(x) =





if x 6= xi :
∑n
i=1

d
−BiΘ
i∑
d
−BiΘ
i

,

if x = xi : Wij

(10)

where Θ is the attenuation coefficient that is automatically selected using CV
error, di is the distance between x and xi, Bi is the normalized global accuracy
of the constituent model that yields the the lowest error at xi, and W is the
observed weight matrix.

According to the law of total expectation, the prediction and variance from
the mixture of multiple Kriging models can be computed through the law of
total expectation and total variance [12], respectively. In this paper, we use the
UQLab open source software to construct the Kriging model [15].

3 Applications to Aerodynamic Problems

We consider two engineering test cases in order to demonstrate the efficacy of the
ensemble methods. The two problems considered are the subsonic and transonic
airfoil (i.e., the cross-section of an aircraft wing) design, with two subcases for
the subsonic airfoil problem. Here, the output of interest for all cases is the
drag coefficient (Cd), computed by a computational fluid dynamics method,
which measures the efficiency of aerodynamic bodies. For each test case, we
compared the Kriging model with Gaussian, Matérn-3/2, and Matérn-5/2 kernel
functions, the scheme that yields the lowest CV error (i.e., model selection),
local ensemble, and global ensemble. The Kriging quality is measured by the
squared correlation coefficient, i.e., R2. We also use the average performance
score (APS) [16] to compare various Kriging methods. APS indicates the number
of other methods that strictly dominate the method being investigated; thus, low
APS value denotes a good performing method.
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3.1 Subsonic airfoil problem

Design optimization of an airfoil in subsonic flow regime for low-speed is highly
useful for such applications as unmanned aerial vehicles or low-speed training
aircraft. For the subsonic airfoil problem, we used the PARSEC airfoil parame-
terization technique [17] (see Fig. 1 and Table 1) and we set the Reynolds and
Mach number to 3×106 and 0.3, respectively. Here, the first and second subcase
considers a fixed angle of attack of 2

◦
and fix Cl = 0.5, respectively. The lower

and upper bound (i.e., lb and ub, respectively) for the subsonic airfoil problem
are shown in Table 1. Since this case is cheap, we could evaluate a large number
of samples for the training and validation set. We used training sample points
with n = 40 and n = 80 generated by Latin hypercube sampling with 1000
validation samples.

Fig. 1: Illustration of PARSEC airfoil parameterization.

Table 1: The upper and lower bounds for the subsonic airfoil problem.

Variable Definition lb ub

rle leading edge radius 0.0108 0.0162
Xup upper crest position in horizontal coordinates 0.3288 0.4932
Zup upper crest position in vertical coordinates 0.0830 0.1245

ZXXup upper crest curvature -0.8700 -0.5800
Xlo lower crest position in horizontal coordinates 0.3254 0.4881
Zlo lower crest position in vertical coordinates -0.0690 -0.0460

ZXXlo lower crest curvature 0.3086 0.4629
αte trailing edge direction -0.2286 -0.1524
βte trailing edge wedge angle 0.1120 0.1680

Results for subcase 1. The R2 results for the first subsonic case are shown
in Fig. 2. Comparison of Kriging models with single kernel function shows that
Gaussian is the most suitable kernel function for this particular problem, followed
by Matérn-5/2 and Matérn-3/2. The global ensemble and model selection are
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the most robust multiple kernel approaches that can match the approximation
quality of the Kriging with the Gaussian kernel. On the other hand, the local
ensemble is outperformed by two methods on a high number of sample points
(i.e., n = 80).

The weight distribution obtained from all 30 independent runs for n = 40
and n = 80 are shown in Figs. 3 and 4, respectively. First, the model selection
has a very strong tendency to select Gaussian kernel over the others for both
n; this indicates that the approximation quality of Kriging with the Gaussian
kernel is far superior over the Matérn kernels for this problem. For the global
ensemble scheme, there is a fairer distribution of kernel, where the kernel with
the highest portion is Gaussian followed by Matérn-5/2 and Matérn-3/2. We
observe a difference between the proportion of kernels for the global and local
ensemble, that is, the latter tends to favor Matérn-3/2 over Matérn-5/2. This
means that the Kriging model with Matérn-3/2 kernel is able to produce a locally
accurate approximation near the design points over the Matérn-3/2 kernel; this
trend is stronger with higher sample size. However, such scheme is not as optimal
as the global ensemble for this particular problem.
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(a) n = 40.
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(b) n = 80.

Fig. 2: R2 results for the first subcase of subsonic airfoil problem. The number
inside the bracket shows the corresponding APS value.

Result for subcase 2. The results for subsonic case 2 (see Fig. 5) reveal that
the global ensemble is able to compete with the two best-performing methods for
this problem, that is, Kriging with Matérn-3/2 and Matérn-5/2 kernel function.
In contrast to the first subsonic case, the performance of Kriging with Gaussian
kernel is not really satisfying as indicated by its high APS for both sample
sizes. The model selection approach does not perform so well in low sample
size, primarily due to the effect of low sample size on the CV accuracy. Results
also show that the local ensemble is more favorable compared to the model
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(c) Local ensemble.

Fig. 3: Distribution of the weights for the first subsonic case with n = 40.
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(b) Global ensemble.
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(c) Local ensemble.

Fig. 4: Distribution of the weights for the first subsonic case with n = 80.

selection, indicating that mixing several Kriging models with multiple kernel
function is more advantageous than model selection for this problem. However,
the fact that the local ensemble is outperformed by the global ensemble means
that the latter is even more favorable; also, the global ensemble is very easy
to be constructed. The corresponding weights are shown in Figs. 6 and 7. It is
interesting to see that although the ensemble approaches give more weights to
the Gaussian kernel, combination with other kernel functions yields a suppressing
effect to the inadequacy of Gaussian on this particular problem.

3.2 Inviscid transonic airfoil problem

The second sub-case is the design of inviscid (i.e., no friction) transonic airfoil
problem in Mach number of 0.73, which is the flying regime of a modern com-
mercial aircraft, and angle of attack of 2

◦
. The airfoil shape for the transonic

problem is parameterized by the Class Shape Transformation (CST) [18] method
with a total of 16 variables (i.e., 8 variables for each upper and lower surface).
We used the RAE 2822 airfoil shape as the datum and then varied the CST
shape parameters by ±20%. We set n to n = 50 and n = 100 by taking a subset
of random samples from the available 400 samples and then use the other subset
as validation samples.
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Fig. 5: R2 results for the second subsonic airfoil case. The number inside the
bracket shows the performance score.
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(b) Global ensemble.
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Fig. 6: Distribution of the weights for the second subsonic case with n = 80.

The R2 results are depicted in Fig. 8 while the distributions of the generated
weight are shown in Figs. 9 and 10. We observe that the Gaussian kernel strictly
outperforms Matérn kernels, especially Matérn-3/2. Due to this significant per-
formance difference, the performance of the model selection scheme successfully
mimics that of the Kriging model with the Gaussian kernel. On the other hand,
the local and the global ensemble approach are outperformed by the model selec-
tion and Kriging with the Gaussian kernel; however, it is worth noting that the
ensemble schemes successfully avoid the relatively poor performance of Kriging
with Matérn-3/2 kernel and are also better than that of Matérn-5/2. In this
regard, the ensemble schemes act as a safeguard that prevents a misspecification
of kernel that yields a relatively poor performance.

The trend of the weighting for the kernels shows a similar trend to that
of the subsonic airfoil case. In the inviscid transonic airfoil case, the weight
of Matérn-5/2 in the global ensemble scheme is more dominant than that of
Matérn-3/2, while it is the opposite case for the local ensemble. Especially on the
first subsonic and transonic airfoil case, Kriging with Matérn-5/2 kernel is more
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(c) Local ensemble.

Fig. 7: Distribution of the weights for the second subsonic case with n = 80.

globally accurate than that of Matérn-3/2; which explains why the local ensemble
scheme is less accurate than the global one since the former tends to give more
reward to the Matérn-3/2 kernel. However, when Bayesian optimization is to be
performed, there is a chance that the local ensemble scheme would be better
than the global ensemble due to that a local accuracy is more important for
optimization; empirical experiments are needed to test this hypothesis.

0.9 0.925 0.95 0.975 1

R
2

Gauss (0)

Matern-3/2 (5)

Matern-5/2 (4)

Lowest LOOCV (0)

Global (2)

Local (2)

(a) n = 40.

0.9 0.925 0.95 0.975 1

R
2

Gauss (0)

Matern-3/2 (5)

Matern-5/2 (4)

Lowest LOOCV (0)

Global (2)

Local (2)

(b) n = 80.

Fig. 8: R2 results for the inviscid transonic airfoil case. The number inside the
bracket shows the performance score.

4 Conclusions and future works

In this paper, we studied the efficacy of the ensemble of Kriging with mul-
tiple kernel functions for approximating black-box engineering functions. Our
research is motivated by the need to create a robustly accurate surrogate models
without eliminating the advantage of uncertainty structure that can be used for
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Fig. 9: Distribution of the weights for the inviscid transonic airfoil case with
n = 50.
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Fig. 10: Distribution of the weights for the inviscid transonic airfoil case with
n = 100.

Bayesian sequential optimization strategy. To this end, we extend the previous
work in the ensemble of Kriging with multiple kernel functions by introducing
advanced kernel functions (i.e., Matérn class) besides the widely used Gaus-
sian. Further, we implement the global and the local ensemble technique to mix
multiple Kriging models. Since our primary objective is for engineering design,
we directly tested the approach on aerodynamic problems as representatives for
general engineering problems. It is shown that for the airfoil problems, the local
and ensemble approaches are robust in terms of the approximation quality, in a
sense that they could mimic the performance of the best performing kernel or
at least avoiding misspecification of the kernel. Comparing the two ensemble ap-
proaches, the global ensemble is better in mixing multiple Kriging models than
the local ensemble; further, this also comes with a simpler method for computing
the weights. The model selection approach (i.e., select the model with the lowest
LOOCV error), although might outperform ensemble approaches when a single
kernel function is strictly better than the others, is prone to the misguidance of
the CV error in selecting the best model as shown in the results from the second
subsonic airfoil case.

For future works, benchmarking of the ensemble of Kriging models and those
with single-kernel function should be performed within the Bayesian optimiza-
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tion context. Furthermore, the capability of the aforementioned approach should
also be investigated for applications besides optimization (e.g., uncertainty quan-
tification and global sensitivity analysis).
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Abstract. Artificial neural network training is an important technique in terms 
of the similarity of human brains. Evolutionary algorithms, swarm intelligence 
algorithms, single solution based algorithms are algorithms used for ANN train-
ing. They have some advantages and disadvantages. The aim of this paper is to 
develop an algorithm that combines the particle swarm optimization (PSO) with 
the Levenberg-Marquardt algorithm. By using PSO technique, optimum particle 
is get and by using this particle, proposed algorithm train the neural network by 
using the back propagation algorithm. Each backpropagation algorithms are dif-
ferent in terms of storage and computational requirements. Since reducing train 
time and increasing model accuracy is the most important metric while evaluat-
ing ANN training algorithms, Levenberg-Marquardt algorithm is selected be-
cause of the shorting duration and more satisfactory performance. 

Keywords: Artificial Neural Network, backpropogation algorithm, particle 
swarm optimization 

1 Introduction 

Artificial Neural Networks (ANN) offer several advantages like less statistical train-
ing, many training algorithms [1][2]. Backpropagation algorithms are most commonly 
used algorithms for training ANN. However, they have some disadvantages like that 
their successes are based on learning parameters. These ones are probably stuck in 
local optima solution especially for complex functions [2, 3]. In addition to these, 
backpropagation algorithms suffer from extensive calculation and so cause to lower 
convergence speed [4]. Implementing PSO technique is easier and it needs few para-
meters than the other algorithms like genetic algorithm (GA) [5, 6]. Furthermore, 
convergence speed of GA may become too slow when coding chromosomes with 
more genes to enhance the accuracy of the algorithm when a problem is complex and 
needs many parameters [3, 7]. However, PSO has also some disadvantages; easily 
falling into a local optimum in contrast to backpropagation which finds global optima 
easily [3,8,9]. While training neural networks, it is considered that LM algorithm has 
the highest speed among others [10, 11, 12]. In conclusion, the aim of the proposed 
algorithm in this paper is using both PSO and BP algorithms which have strong 
searching ability globally and locally respectively [3]. Four data sets; Iris, Cancer, 
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Diabetes and Thyroid are used to show the results. The main contribution of this work 
is that new algorithm is designed to overcome deficiencies of the existing algorithms. 
The remainder of the paper is organized as follows: In the following section, proposed 
algorithm is described. Section 3 presents us the results of our experiment. Section 4 
presents us the conclusion of our study and discusses about future work.  

2 Proposed Algorithms 

In this part, proposed algorithm which optimizes the weights of ANN with the combi-
nation of PSO algorithm is explained. Proposed algorithm is a combination of PSO 
and LM algorithms. For the LM backpropagation algorithm, fully connected layered 
feed forward networks are used. Apart from input units, all units have a bias. In the 
subsections, PSO with time varying acceleration coefficients, opposition based learn-
ing components, Levenberg Marquardt Algorithm and proposed algorithm that com-
bines them will be detailed. 
PSO with Time-varying Acceleration Coefficients 
Particles for PSO algorithm are defined as the combination of weights and biases of 
the neural network;𝑝 = {𝑤ଵ, 𝑤ଶ, 𝑤ଷ, 𝑤ସ, 𝑏ଵ, 𝑤ହ, 𝑤଺, 𝑏ଶ, 𝑏ଷ, }𝑤here w`s are weights for 
ANN and b`s are bias defined for hidden and output layer. 
Due to the fact that the choice of the parameters of the PSO algorithm has enormous 
effects on the performance and accuracy, selecting well PSO parameters is another 
major search area. If cognitive component has higher value, particles travelling with 
no preset route i.e. result in excessive wandering of particles [13]. If social component 
has higher value, particles converge prematurely [13]. To overcome this problem, 
time varying parameters are used. 0.5 is for c1(m) and c2(1) and 2.5 for c1(1) and 
c2(m) are selected as the most effective values where m is the maximum number of 
iterations [13, 14]. 
Opposition based Learning Components 
Opposition based learning components concept is based on evaluation of opposite 
value of candidate solution to provide another chance for finding global optimum 
solution [15].  
Proposed Algorithm Details 

Table 1. Algorithm Details of Proposed Algorithm 
Algorithm: Neural Network with PSO Algorithm 

1: Initialize number of iteration, inertia and social and cognitive constants for PSO algorithm 
2: Initialize PSO population randomly according to input architecture, init_pop 
3: FOR each particle in population 
4: Compute opposite values of each particle 
5: Evaluate the fitness value of both particle and opposite value of particle 
6: IF fitness value of particle is better than fitness value of opposite value, add particle to population, 

init_pop 
7: ELSE add opposite particle to population, init_pop 
8: END IF 
9: END FOR 

10: RUN PSO algorithm with the init_pop 
11: FOR each iteration 
12: Update social and cognitive constants 
13: END FOR 
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14: START ANN training with the initial weights and biases decided by PSO algorithm 
15: END 

3 Results 

To evaluate the accuracy of the proposed algorithm, the following equation is used. 
For the algorithm execution, MATLAB NNET toolbox is used. In this study, dataset 
is divided into two sets which are for training and testing.  

Results of Cancer: In figure 1, 0 is for not being cancer and 1 is for being cancer. 
Only 2 data is not predicted correctly. 
Results of Diabetes: Although 28 people are diabetic, they predicted as not diabetic. 
Accuracy Rate is 0.7969. 
Results of Iris: Accuracy is 0.9733. Only 2 data is predicted wrong in test data set. 
All test data except 2 of them are correctly predicted.  
Results of Thyroid: Accuracy is 0.9641. 72 data is predicted wrong in test data. 
However, since the data size is very high, accuracy rate is also enough high.  
Comparison between different neural network training algorithms  

We compare the three neural network training algorithms (Levenberg marguard, 
gradient descent and gradient descent with momentum) in terms of accuracy metric. 
Training neural network with LM yields better results than the other methods. Also, 
when we look at the iteration numbers of neural network, LM algorithm iterates less 
than the other two algorithms which decreases the execution time. 

Table 6. Comparison with other training methods 
Data Set PSO with Levenberg-

Marquardt 
PSO with Gradient 
Descent 

PSO with Gradient Des-
cent with Momentum 

Cancer 1000 iterations - 0.9771 57 iterations - 0.7650 193 iterations - 0.7650 
Diabetes 41  iterations - 0.7969 48 iterations - 0.6797 144 iterations - 0.6797 
Iris 33 iterations - 0.9733 1000 iterations - 0.8933 1000 iterations - 0.9200 
Thyroid 89 iterations - 0.9641 1000 iterations - 0.9252 1000 iterations - 0.9252 

4 Conclusion 

To sum up, we have propose a new modified method that weights of nodes of neural 
network is decided by using PSO and network is trained by using Levenberg Mar-
quardt technique. We realized that the proposed method yields better results than the 
other popular training methods for artificial neural networks. For the future work, we 
can apply our method to different data sets and measure the accuracy of the proposed 
method with extensive statistical techniques. Also, neural network is designed in a 
simplest way. It is also modeled complexly to increase the accuracy of the results and 
efficiency of the algorithm. 
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Abstract. The identification of qualified peptides as ligands for diagnostic and therapeutical
interventions requires the compliance of multi- and many-objective biochemical optimization
compositions. Various MOEAs have been designed and achieve competitive performance on
multi-objective problems, but encounter considerable challenges in many-objective problems.
Pareto-based MOEAs slow down in convergence as the classification of the solutions’ quality
according to the Pareto dominance principle becomes increasingly undifferentiated with the
rise of objectives. This research compares a MOEA evolved for drug design with an indicator-
based selection to an enhanced version of this algorithm with a general aspect-based selection
strategy. This strategy selects individuals for the succeeding generation by meta-modeling of
the optimization problem. The performance of the indicator-based and aspect-based selection
are analyzed on generic 3- to 6-dimensional physiochemical optimization problems and the
impact of the reference point in the meta-modeled selection is investigated.

1 Introduction

Peptides have several attractive features as they are highly selective, of low toxicity and immune
reactions, have a high-affinity and are very effective in binding to targets. Due to these facts,
peptides are highly suitable as applicants for diagnostic and therapeutic agents. Peptides as drug
components have to fulfill several additional properties simultaneously like a good cell permeability,
high stability of the molecule and insoluble in aqueous solutions.[1]

The synthesis and laboratory analysis of peptides is a time and cost consuming process. A
MOEA for molecular optimization, referred to as COSEA-MO, has been recently reported and
benchmarked in [2] identifying a selected number of highly qualified molecules within a very low
number of generations in the case of 3- and 4-dimensional physiochemical optimization problems.
COSEA-MO is evolved to improve an in vitro drug design process as a computer-assisted system
to identify a selected number of improved molecules providing a wide range of genetic diversity
within a very low iteration number for an efficient laboratory examination. Dynamic deterministic
variation operators are used in COSEA-MO and a mating pool of the old population and the
offspring is generated after variation. A combination of fitness-proportionate and indicator-based
selection determines the individuals of the succeeding generation. The Pareto dominance principle
as a part of the selection strategy potentially induces problems in the case of Many-objective
Optimization Problems (MaOPs).

Multi-objective Optimization Problems (MOPs) with more than three objectives are usually
referred to as MaOPs. They pose a challenge for MOEAs in the both targets, convergence and
diversity. Pareto-based MOEAs have difficulties to solve MaOPs due to their inability to classify
the quality of solutions by the Pareto dominance principle. Furthermore, the definition of diversity
is less straightforward to reformulate in MaOPs.[3]

A more sophisticated selection strategy was recently introduced in [4] to enhance COSEA-MO
for many-objective molecular optimization problems. This selection strategy applies the Pareto
dominance principle not directly to the optimization problem, but to a two-dimensional indicator
problem covering two generic aspects of molecular optimization problems: firstly, an indicator for
the quality of the peptides; secondly, an indicator for the genetic dissimilarity of a peptide with
regard to the current population. The performance of COSEA-MO with the indicator-based and the
aspect-based selection strategy, further termed nCOSEA-MO, are analyzed in the case of generic
3- to 6-dimensional physiochemical optimization problems as well as the impact of the reference
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point in the aspected-based selection strategy. The results are discussed regarding the quality of
the identified peptides, the distribution of the solutions over the search space and the specifications
in the search behavior.

2 Related work

MOEAs nowadays are categorized as Pareto-based, decomposition-based and indicator-based meth-
ods and have a high potential to achieve excellent performance in optimization problems with two
or three objectives. Otherwise, MOEA have substantial difficulties to solve MaOPs [11]. These
difficulties are to be found in the selection operators, the computational cost and visualization of
the solutions. Pareto-based MOEA like NSGA-II [12] experience a low efficiency in terms of conver-
gence as the selection criteria of NSGA-II is primary Pareto-based. The consequence is a significant
increase of the non-dominated solutions as the Pareto principle has difficulties in distinguishing
the individuals of a population. As the term convergence is neglected, diversity is predominant,
see e.g. [25]. For decomposition-based methods like MOEA/D [13], assigning of weight vector val-
ues or a reference point in high dimensions is challenging. Indicator-based problems like HypeE
[14] produce highly increasing computational complexity caused by the hypervolume indicator.
Improvement of these algorithms for many-objective optimizations have been published addressing
the challenge of convergence and diversity by methods of objective reduction, incorporation and
preferences, modified dominance definitions and the introduction of additional selection criteria:

Dimensionality reduction methods have been published dealing with redundant objectives: In
[15], a technique of selecting a subset of conflicting objectives using a correlation-based ordering
of objectives is presented. In [16], objective reduction is formulated as a multi-objective search
problem. Three formulations are introduced of this problem: two formulations base on preservation
of dominance structure and one formulation utilizes the correlation between the objectives. NSGA-
II is applied to generate Pareto front subsets that offer decision support to the user.

Preference-based many-objective evolutionary algorithms are developed providing a decision-
maker search for user’s preferred solutions. In [17], a brushing method is proposed to focus on a
subset of Pareto optimal solutions on user’s preference. In [18], a preference-inspired coevolutionary
algorithm is proposed applying the concept of a set of decision-makers preferences together with a
population of candidate solutions.

Alternative Pareto dominance principles have been proposed modifying the definition of Pareto
dominance. Alternative rules such as ε-dominance [19], L-dominance [20], fuzzy- [21] and grid-
dominance [22] have been published.

An established and improved MOEA for many-objective optimization is NSGA-III [23]. The
primary Pareto-based selection of NSGA-II is improved by using the non-dominated sorting for the
first aspect and a more complex niching operator based on a set of predefined reference directions,
termed weight vectors, to address diversity. It is a challenge to design the weight vectors in real-
world applications. Furthermore, MOEA/DD and Two-Arch2 achieved excellent performance in
MaOPs [24]. MOEA/DD uses the Pareto dominance principle and decomposition, Two-Arch2 is
also based on Pareto dominance and an indicator.

3 Designed MOEA for molecular optimization

The presented COmponent-Specific Evolutionary Algorithm for Molecule Optimization (COSEA-
MO) [2] is designed to complement an in vitro drug design process with a computer-assisting system
aimed at the specific requirements of such combined in vitro and in silico process: Firstly, several
molecular properties are not predictable by numerical approximation models or descriptor value
sets and have to be determined in an in vitro process. As a consequence, the evolutionary process
has to provide a selected number of high-qualified peptides within a very low number of generations
and objective evaluations. Secondly, the proposed optimized peptides have to be highly diverse in
its primary genetic structure and therefore, the algorithm has to propose the whole range from very
similar to very diverse peptide sequences in each of the low iteration. Thirdly, the algorithm has
to be independent of problem-specific parameters as these are either usually unknown or expert
rule of thumbs in real-world application problems.
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The algorithms briefly described in the following makes use of a combination of deterministic
dynamic variation operators and a selection strategy for the determination of the individuals for the
succeeding generation. The traditional selection concept is tournament-based and a combination
of fitness-proportionate and indicator-based selection. The procedure of the proposed algorithm is
similar to NSGA-II. The initial population of COSEA-MO is generated by N random individuals.
Individuals are selected randomly from the actual population for variation. Parent and offspring
sets are combined to a set of size 2N . The succeeding generation of size N is generated by optionally
applying either the proposed indicator-based selection strategy (COSEA-MO), or the aspect-based
selection procedure (nCOSEA-MO).

The individuals in COSEA-MO represent peptides of length 20 consisting of the 20 canonical
amino acids. The individuals are encoded as character strings. As a consequence, the search space
has a complexity of 2020. This encoding present all feasible and only feasible solutions, which
have an equal probability to be presented. Tools for the determination of physiochemical peptide
properties often make use of this character encoding. Therefore, this encoding does not require a
conversion of the data format based on a character set representing an amino acid chain.

The mutation and recombination operator are motivated by a suitable balance of global and
local search. Especially high mutation rates in early generations support the explorative search
behavior and lower mutation rates in later generations support the exploitive search. Determinis-
tic dynamic variation operators are suitable operators to achieve this purpose. The characteristic
of deterministic dynamic operators is the adaptation of mutation and recombination rates by a
predefined functional reduction with the iteration progress. This is implemented by determinis-
tic functions depending on the current iteration number, the total number of iterations and the
molecule length.
The recombination operator varies the number of recombination points over the generations via a
linearly decreasing function:

xR(t) =
l

2
− l/2

T
· t, (1)

which depends on the length of the individual l, the total number of the generations T and the
index of the current generation t. Three parents are used for recombinations.
An adapted version of the deterministic dynamic operator of Bäck and Schütz [?] determines the
mutation probabilities via the following function with a = 5

pBS = (a+
l − 2

T − 1
t)−1, (2)

The mutation rates of the traditional operator have been adapted to a lower starting mutation
rate by the parameter a = 5.

3.1 Indicator-based selection strategy

The traditional selection concept of COSEA-MO is depicted in Fig 1. It starts with the tournament
selection of ts individuals from the population. These individuals are ranked according to the Pareto
dominance principle and the volume of each individual to the zero point as ideal reference point
is calculated. From this ranked tournament set, the individuals with the lowest volume values are
selected for the succeeding generation with a probability p0, with the aim of guiding the search
process in direction of high quality solutions. With a probability 1− p0, the individuals are chosen
from different fronts via SUS. The number of pointers in front-based SUS is equal to the number of
fronts detected in the ranking process. The segments are equal in size to the number of individuals
in each front. These steps repeat until the succeeding filial generation is complete. Consequently,
this selection strategy has two parameters, the tournament size and the probability p0 for choosing
the individuals from the first front. Default values are ts = 10 and p0 = 50%.

3.2 General-aspect-based selection

This section describes the alternative aspect-based selection strategy. A MaOP is given by f :
P −→ Rm, p −→ (f1(p), f2(p), ..., fm(p)), whereby m > 3 is the number of objectives fi as
molecular functions which have to be minimized, and P is the quantity of feasible molecules. The
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Fig. 1. Indicator-based selection strategy

procedure of the novel selection strategy is described in Algorithm1. The strategy is ranked and
binary tournament based. The Pareto principle used for ranking is not directly applied on the
objective values but on a two-dimensional aspect-based minimization problem (line 4). The first
aspect reflects the solutions’ quality by the calculation of the Lp-norm of the objective values to a
reference point (RP) (line 2), which is either determined by the minimum of each objective provided
by the population members (line 1). Therefore, this reference point varies with the population.
Alternatively, in the experiments the zero point is selected as ideal reference point RP. The second
aspect refers to the general idea of maintaining a high genetic dissimilarity within the populations.
Needleman Wunsch Algorithm [10] is chosen as global sequence alignment (line 3).

Algorithm 1: Pseudo code of the aspect-based selection strategy

Input: Current population Pt with |Pt| = 2N , Pt+1 = {}
Calculation of the two indicator values for each solution:
1: RP := (mini1f1(pi1),mini2f2(pi2), ...,minimfm(pim)) ;
2: ∀p ∈ Pt: fLp−norm(p) = Lp(f(p), RP );
3: ∀p ∈ Pt: diss(p) = 1

|Pt|
∑

p∈Pt

SequenceAlignment(p, Pt − p);

Selection process:
4: Ranking of Pt according to (fLp−norm, diss) into fronts Fi;
5: while |Pt+1|+ |Fi| < N do

Pt+1 = Pt+1 ∪ Fi; i++;
end
6: binary tournament selection: while |Pt+1| < N do

select p1, p2 ∈ Pt \ {Pt+1}:
if (fLp(p1) ∗ diss(p1) < fLp(p2) ∗ diss(p2)) add p1 to Pt+1 ;
else add p2 to Pt+1;

end
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5

The N -best individuals are selected in the succeeding generation based on the rank (line 5) and
the volume dominance principle via binary tournament selection (line 6). L2-norm is used here in
the experiments.

4 Experimental studies

This section introduces and motivates the generic physiochemical optimization problems, describes
the simulation onsets and presents the experimental results. For performance comparison and
discussion of the different selection configurations, four optimization problems with 3 up to 6
objective functions are applied predicting physiochemical peptide properties. These optimization
problems are generic in the sense that the physiochemical properties of molecules are determined
by descriptor values of each amino acid in the molecule sequence.

4.1 Physiochemical optimization problems

The optimization problems are composed of a basic peptide design composition comprising the
charge, solubility in aqueous solutions and molecule size, as well as four advanced peptide design
compositions with additional properties like molecule stability and structure. The six physiochem-
ical functions work on the primary amino acid sequence of the peptides and are provided by
the open source BioJava library [6]. A description of the determination methods of the following
physiochemical properties is also available here [6]:

1. Needleman Wunsch Algorithm (NMW)
2. Molecular Weight (MW)
3. Average Hydrophilicity (Hydro)
4. Instability Index (InstInd)
5. Isoelectric Point (pI)
6. Aliphatic Index (aI)

NMW is a well known and used method for the global sequence alignment of a solution to a pre-
defined reference individual. This algorithm refers to the common hypothesis that a high similarity
between molecules refers to similar molecular properties [7].

MW is an important peptide property as a minimized MW ensures a good cell permeability.
MW of a peptide sequence of the length l is determined by the sum of the mass of each amino acid
(ai) plus a water molecule:

l∑

i=1

mass(ai) + 17.0073(OH) + 1.0079(H), (3)

where O (oxygen) and H (hydrogen) are the elements of the periodic system.
A common challenge of drug peptides is the solubility in aqueous solutions, especially peptides

with stretches of hydrophobic amino acids. Therefore, Hydro is calculated by the hydrophilic-
ity scale of Hopp and Woods [8] with a window size equal to the peptide length l. An average
hydrophilicity value is assigned to each candidate peptide using the scales for each amino acid ai:

1

l
· (

l∑

i=1

hydro(ai)). (4)

The use of molecules as therapeutic agents is potentially restricted by their instability and
their potential degradation by enzymes in systemic application. The stability is addressed by the
InstInd as stability is a very important feature of drug components. InstInd is determined by the
Dipeptide Instability Weight Values (DIWV) of each two consecutive amino acids in the peptide
sequence. DIWV are provided by the GRP-Matrix [9]. These values are summarized and the final
sum is normalized by the peptide length l:

InstInd =
10

l

l∑

i=1

DIWV (xi, xi+1) (5)
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pI of a peptide is defined as the pH at which a peptide has a net charge of zero. A peptide has
its lowest solubility at its pI. Therefore, the charge of a peptide influence the solubility in aqueous
solutions. The pI value is calculated as follows: Firstly, the net charge for pH = 7.0 is determined.
If this charge is positive, the pH at 7 + 3.5 is calculated; otherwise the pH at 7− 3.5 is determined.
This process is repeated until the modules of the charge is less or equal 0.0001.

aI of a peptide is defined as the relative volume occupied by aliphatic side chains consisting of
the amino acids alanine (Ala), valine (Val), isoleucine (Ile) and leucine (Leu). aI is regarded as a
positive factor for the increase of thermostability of globular molecules. aI is calculated according
to the formula:

aI = X(Ala) + a ·X(V al) + b · (X(Ile) +X(Leu)), (6)

where X(Ala), X(V al), X(Ile) und X(Leu) are mole percent of the amino acids. The coefficients
a and b are the relative volume at the valine side chain (a = 2.9) and Lei, Ile side chains (b = 3.9)
to the side chain Ala. Table 1 presents the composed physiochemical optimization compositions

Table 1. Physiochemical functions of the different optimization problems

dimension abbr. objective functions

3D 3D-MOP NMW, MW, Hydro

4D 4D-MaOP NMW, MW, Hydro, InstInd

5D 5D-MaOP NMW, MW, Hydro, InstInd, pI

6D 6D-MaOP NMW, MW, Hydro, InstInd, pI, aI

with the abbreviations used in the following. These six objective functions comparatively act to
reflect reflect the similarity of a particular peptide and a pre-defined reference peptide:

f(CandidatePeptide) := |f(CandidatePeptide)− f(ReferencePeptide)| (7)

Therefore, the four objective functions have to be minimized and the optimization problems are
minimization problems.

4.2 Simulation onsets

The experiments are generally performed with the default population size of 100 motivated by
previous experimental studies, the start population is randomly initialized. The individuals are 20-
mer peptides composed of the 20 canonical amino acids. For statistical reasons, each configuration
is limited by 10 generations and is repeated 30 times. Firstly, the approximate Pareto optimal
sets (PFs) of COSEA-MO and nCOSEA-MO in each generation are compared in terms of the
established C-metric [5]

C(PF1, PF2) :=
| {b ∈ PF2 | ∃a ∈ PF1 : a � b} |

| PF2 |
. (8)

C(PF1, PF2) = 0 means that no solution of PF2 is weakly dominated by at least one solution of
PF1, whereas C(PF1, PF2) = 1 implicate that all points of PF2 are weakly dominated by PF1.
This metric is usually not symmetric, therefore C(PF1, PF2) is not a metric in a mathematical
sense and consequently C(PF1, PF2) and C(PF2, PF1) have to be determined. Therefore, the C-
metric value reflects the percentage of solutions which are weakly dominated by one individual of
the other approximate Pareto set.

PF of COSEA-MO is determined according to the molecular optimization problem, whereas
PF of COSEA-MO is determined according to the two-dimensional meta-modeled problem. The
C-metric values are determined according to the objective values as usual. Table 2 to 10 depict the
C-metric values C1 = C(nCOSEA-MO, COSEA-MO) and C2 =C(COSEA-MO, nCOSEA-MO) for
the 3D-MOP to 6D-MaOP with different selection parameter settings p0 and reference point (RP)
based on empirical and experimental findings.
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Table 2. 3D-MOP: p0 = 50% and RP = min

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

C1 0.88 0.87 0.9 0.9 0.81 0.73 0.73 0.53 0.68 0.7

C2 0.69 0.75 0.73 0.65 0.68 0.61 0.69 0.7 0.56 0.55

Table 3. 3D-MOP: p0 = 50% and RP = 0

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

C1 0.78 0.83 0.83 0.79 0.64 0.67 0.69 0.58 0.6 0.6

C2 0.72 0.69 0.66 0.64 0.65 0.55 0.55 0.68 0.48 0.47

Table 4. 4D-MaOP: p0 = 50% and RP = min

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

C1 0.55 0.55 0.6 0.63 0.64 0.53 0.67 0.58 0.7 0.6

C2 0.55 0.45 0.44 0.51 0.46 0.53 0.51 0.48 0.5 0.56

Table 5. 4D-MaOP: p0 = 50% and RP = 0

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

C1 0.71 0.65 0.7 0.72 0.64 0.65 0.46 0.62 0.52 0.32

C2 0.51 0.55 0.56 0.46 0.5 0.49 0.54 0.54 0.46 0.52

Table 6. 5D-MaOP: p0 = 50% and RP = min

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

C1 0.48 0.36 0.38 0.38 0.33 0.29 0.24 0.22 0.18 0.22

C2 0.6 0.6 0.65 0.64 0.63 0.6 0.59 0.66 0.62 0.64

Table 7. 5D-MaOP: p0 = 50% and RP = 0

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

C1 0.5 0.45 0.35 0.32 0.3 0.22 0.3 0.23 0.21 0.17

C2 0.59 0.66 0.63 0.63 0.68 0.67 0.68 0.62 0.54 0.55

Table 8. 5D-MaOP: p0 = 70% and RP = min

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

C1 0.4 0.33 0.34 0.35 0.3 0.2 0.18 0.15 0.12 0.18

C2 0.59 0.52 0.62 0.61 0.61 0.56 0.56 0.64 0.58 0.62

Table 9. 5D-MaOP: p0 = 70% and RP = 0

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

C1 0.55 0.45 0.32 0.31 0.26 0.16 0.3 0.2 0.16 0.08

C2 0.57 0.57 0.62 0.56 0.58 0.55 0.55 0.46 0.47 0.5

Table 10. 6D-MaOP: p0 = 50% and RP = min

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

C1 0.32 0.26 0.43 0.29 0.26 0.24 0.25 0.25 0.22 0.25

C2 0.51 0.55 0.76 0.51 0.52 0.51 0.45 0.54 0.61 0.54

Table 11. 6D-MaOP: p0 = 50% and RP = 0

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

C1 0.4 0.4 0.41 0.38 0.37 0.36 0.28 0.19 0.28 0.37

C2 0.57 0.61 0.72 0.6 0.46 0.55 0.52 0.6 0.56 0.48

Table 12. 6D-MaOP: p0 = 70% and RP = min

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

C1 0.34 0.3 0.36 0.3 0.22 0.23 0.21 0.15 0.16 0.14

C2 0.46 0.5 0.42 0.48 0.56 0.58 0.56 0.55 0.6 0.54

Table 13. 6D-MaOP: p0 = 70% and RP = 0

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

C1 0.4 0.38 0.36 0.37 0.35 0.31 0.23 0.14 0.2 0.25

C2 0.53 0.54 0.48 0.53 0.52 0.59 0.57 0.61 0.52 0.5

Fig. 2. Number of Pareto optimal solution in the
case of nCOSEA-MO.

Fig. 3. Number of Pareto optimal solution in the
case of COSEA-MO.

4.3 Experimental results

The experimental results are analyzed according to the following questions: firstly, does a higher
problem dimension has a different impact on the performance of either or both selection strategies,
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Fig. 4. Peptide quality in the case of 3D-MOP. Fig. 5. Peptide quality in the case of 4D-MaOP.

Fig. 6. Peptide quality in the case of 5D-MaOP. Fig. 7. Peptide quality in the case of 6D-MaOP.

indicator- or aspect-based? Secondly, is there an impact of the selection parameters p0 or RP ob-
servable? Thirdly, is there a fundamental difference in the search behavior of the different selection
configurations?

Table 3-13 depict the C-metric values of nCOSEA-MO and COSEA-MO with different parame-
ter settings on the four optimization problems. A significant difference is observable in comparison
of Table 3-6 with Table 7-13: in the case of 3D-MOP and 4D-MaOP, C1 values are generally higher
than those of C2, revealing that more candidate solutions identified by nCOSEA-MO weakly dom-
inate the solutions of COSEA-MO than vice versa within each of the 10 generations. Otherwise,
in the case of 5D-MaOP and 6D-MaOP, C2 values are generally higher than those of C1, revealing
that more solutions of COSEA-MO weakly dominate solutions of nCOSEA-MO independent of
the parameter settings. Figure 2 and 3 give an insight into the number of approximate Pareto
optimal solutions identified by COSEA-MO and nCOSEA-MO in the test runs. nCOSEA-MO pro-
vides a significantly lower and stable number of candidate solutions, whereas the solutions number
of COSEA-MO is generally higher and increases with the problem dimension as a consequence
of the Pareto dominance principle being directly applied to the objective values. The number of
Pareto optimal solutions of COEA-MO is increasing linearly from 3D-MOP to 4D-MaOP and
this increasing rate slows down by a further dimension increase. The average number of identified
Pareto optimal solutions by COSEA-MO is generally higher in the case of p0 = 70% than those
of p0 = 50%. As the approximate Pareto optimal sets of COSEA-MO are significantly larger than
those of nCOSEA-MO, the probability of identified promising peptides in the sets of COSEA-MO
is clearly higher than in the case of nCOSEA-MO.
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Indicator-based versus Aspect-based Selection 9

Referring to the second question, there is no significant impact of the choice of RP in the
case of the aspect-based selection. Consequently, RP has no impact on the selection pressure
independent of the problem dimension. In the case of 5D-MOP and 6D-MaOP, the probability of
p0 and therefore the selection probability of the individuals for the succeeding generation by the
indicator is increased with the aim of raising the selection pressure. A slight influence of the raise
is observable as the C-metric values are mainly slightly lower in the case of p0 = 70%, revealing
that more peptides of the approximate Pareto optimal sets are indifferent to each other.

To address the third question, a specific mapping method is applied to visualize the peptide
quality of each generation equally for all optimization problems with the aim of analyzing the search
behavior. The peptide quality of each generation is mapped into a point (x; y), where x is the volume
of the gravity point of the scatter plot to zero point as an ideal reference point. The coordinate y
is the standard deviation of the scatter plot points to the calculated reference point symbolizing
the average distance of the solutions points in each generation to the calculated gravity point of
these solutions. Scatter plots of these points are depicted in Figure 4 to 7 for each optimization
problem. Generally, it is observable that nCOSEA-MO has higher volumes of the gravity point
in the generations independent of the problem dimension but lower standard deviations of the
peptides in each generation to the gravity point in the cases of 3D-MOP and 3D-MaOP. Figure
6 and 7 reveal that the results of nCOSEA are generally higher in the volume of the gravity
points and die standard deviation. The results of COSEA-MO with the probabilities p0 = 50%
and p0 = 70% are generally comparable in volume and standard deviation but remarkably low in
both terms compared to nCOSEA-MO. The volume values of the configuration with p0 = 70%
are slightly lower, a consequence of the higher probabilities of the individuals to be selected into
the succeeding generation by the ACV-indicator. The peptides identified by COSEA-MO are more
clustered in the search space, which is a known property of the ACV-indicator. As a consequence,
the indicator-based selection tends to identify higher quality solutions in the case of the 5D-
and 6D-MaOP. nCOSEA-MO provides improved performance in the case of the 3D-MOP and 4D-
MaOP. The analysis of the identified peptides of nCOSEA-MO and COSEA-MO according to their
physiochemical function values reveals an interesting fact: the peptides identified by nCOSEA-MO
are generally of significantly lower MW, but have a higher average hydrophilicity and in the cases
of 5D- as well as 6D-MaOP higher pI values. As a consequence of the second aspect, the identified
peptides of nCOSEA-MO tends to have lower NMW values and therefore provide a higher similarity
to the reference peptide.

5 Discussion and conclusion

This works presents the performance comparison of a specific MOEA for molecular optimization
with optionally two different selection strategy in four multi- and many-objective physiochemical
optimization problems. The analysis of the results reveal that nCOESA-MO with the aspect-based
selection provides a performance improvement in the case of the 3D-MOP and 4D-MaOP com-
pared to COSEA-MO with the indicator-based selection according to the C-metric values. The
performance is measured according to the C-metric values of the approximate optimal solution
sets identified by nCOSEA-MO and COSEA-MO within 10 generations as well as a closer look on
the peptide quality regarding the physiochemical properties by the gravity points of each genera-
tion and the standard deviation of the peptides in each generation to this gravity point. In the cases
of 5D- and 6D-MaOP, COSEA-MO provides a higher number of qualified peptides compared to
nCOSEA-MO having in mind that COSEA-MO has significantly higher approximate optimal solu-
tion sets due to the Pareto dominance principle. A further selection method is required to eliminate
worse candidate solutions for a subsequent laboratory analysis. Consequently, these optimal sets of
COSEA-MO have to be determined by a more sophisticated method in further research work. An
interesting point is the difference of the optimal peptides identified by COSEA-MO and nCOSEA-
MO regarding the physiochemical properties: the identified peptides of nCOSEA-MO are generally
of a significantly lower MW, better NMW values on average but higher average hydrophilicity as
well as pI values in higher dimensions. This makes the use of nCOSEA-MO interesting in a prac-
tical sense even in the cases of 5D- and 6D-MaOP. A low MW is an important peptide property
and therefore referenced objective providing a good cell permeability. Better NMW values indicate
a higher similarity to a predefined reference peptide and therefore potentially higher similarity in
molecule properties.
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A further improvement of nCOSEA-MO is therefore part of the future work as well as the
evolution of a combination of these selection strategies for a robust and good performance of
COSEA-MO in multi- and many-objective optimization.
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Abstract. This paper focuses on the design and implementation of a bike route
optimization approach based on multi-objective bio-inspired heuristic solvers.
The objective of this approach is to produce a set of Pareto-optimal bike routes
that balance the trade-off between the length of the route and its safety level, the
latter blending together the slope of the different street segments encompassing
the route and their average road velocity. Additionally, an upper and lower restric-
tion is imposed on the time taken to traverse the route, so that the overall system
can be utilized for planning bike rides during free leisure time gaps. Instead of
designing a discrete route encoding strategy suitable for heuristic operators, this
work leverages a proxy software – Open Trip Planner, OTP – capable of com-
puting routes based on three user-level preference factors (i.e. safety, inclination
and duration), which eases the adoption of off-the-shelf multi-objective solvers.
The system has been assessed in a realistic simulation environments over the city
of Bilbao (Spain) using multi-objective bio-inspired approaches. The obtained
results are promising, with route sets trading differently distance for safety of
utmost utility for bike users to exploit fully their leisure time.

Keywords: Bike route planning, multi-objective optimization, time-constrained
routing, Open Trip Planner, jMetal.

1 Introduction
Thanks to the rapid advance of technology, transportation networks have become in-
creasingly complex along the last decade. This fact has led the mobility to be a crucial
aspect for society, affecting its quality of life directly. In this way, the necessity for
efficient transport means has increased the demand for Intelligent Transportation Sys-
tems (ITS), lying at the core of many initiatives focused on shedding smartness and
intelligence in different paradigms related to transportation and mobility [1].

Among such paradigms, route planning has gained more and more importance in
the last years [2]. It is an undoubted fact that daily transits (e.g. from home to work
and return) have become a habit for many people worldwide. In this context, by virtue
of well-connected, advanced transport networks, travelers and commuters change from
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one transportation mode to another every day. Taking the underground, then the bus,
and finishing the travel on foot is an example of the typical traveling routine for many
people nowadays. This multi-modal transport aims at providing the traveler feasible
routes between a certain origin and destination, involving diverse public and private
transportation modes connected throughout different schedules [3].

In this context the so-called mono-modal route planning, which correspondingly
consists of routes performed by a single transport type, are also demanded by people for
very diverse purposes, not only by the need for reaching their jobs as postulated above.
Mono-modal routes performed by car, bike or foot are often developed for leisure, last-
mile packet delivery schedules, and public transport planning, among others [4, 5]. As
in any other routing construction process several route planners are available in the
market or in the Web to help users design optimal routes according to their needs and
requirements. The study presented in this work focuses in this latter case, specifically,
in routes performed by bike.

In the last couple of decades a growing number of route planning systems have
been developed, which are freely available for the community of users. These tools,
mostly accessible from different platforms (with deployable versions for computers,
smartphones or tablets), are flexible enough to let users comfortably query routes in
any place and time. In all cases, one of the characteristics shared by all route planners
is that the provided portfolio of routes are strictly based on parameters that the user
enters as an input. However, it is intuitive to think that the user could tolerate a certain
degree of flexibility in his/her inputs to the routing system, should this flexibility lead to
better routes under a certain optimality criterion (e.g. distance, travel time or exposure to
traffic). As surveyed next, the relative scarcity of contributions in the literature exploring
the implications of this flexibility in bike routes is what motivates to conduct this study.

1.1 Related Work

Some studies can be found in the literature focused on bike route planning. To begin
with, a web-based platform is presented in [6] to help cyclists determine safe and ef-
ficient routes. The system developed in that study calculates routes using a weighted
combination of five different metrics, which are considered to optimize a trade-off
among various safety and distance-related factors. A heuristic multi-modal route plan-
ning system is introduced in [7], in which cycling trips are considered. The system in
that work enforces the user to select both origin and destination of the route, along
with other preferences. One of the tested scenarios is bike route from work to home in
an energy-efficient manner. In any case, authors use a single objective aggregating all
route metrics.

Most existing planning systems for bike routing do not formulate the optimality of
explored routes from a multi-criteria or multi-objective approach, but rather opt for ag-
gregate metric models as the ones mentioned above. As a result, planning systems can-
not provide the users with diverse sets of suggested routes, hence narrowing the amount
and diversity of information provided to cyclists for their decision making. A few ex-
ceptions have been published recently, as in [8], where a multi-criteria bicycle routing
problem is tackled. In this work, authors develop a set of heuristics for speeding up the
multi-criteria route search. Concretely, the objectives to optimize in this problem are
the comfort, duration and inclination of the route. Additionally, the heuristic presented
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in that paper is an extension of the standard multi-criteria label-setting algorithm [9].
Another interesting example of this kind is the one proposed by Caggiani et al. in [10].
In this work, a multi-objective biking route choice model is proposed for a bike-sharing
mobile application. One of the research challenges addressed therein is to offer the user
the appropriate starting and ending bike hiring station. To this end, the suggested origin
station is set to the nearest one satisfying the requirements of the user, whereas a similar
criterion is applied for selecting the destination station. The system developed in [10]
informs the user with the starting and ending bike sharing stations, and the best path to
follow according to time, distance, pollution and safety. Additionally, users can select
an alternative route according to the parameter that they are willing to prioritize.

1.2 Research Contribution

This manuscript aims at contributing to the observed scarcity of references dealing with
multi-objective bike route planning by undertaking the design and practical implemen-
tation of an bike path planning system for random bike routes generation, grounded on
multi-objective bio-inspired optimization heuristics. Several novel ingredients are intro-
duced in our problem formulation, the most relevant being 1) the consideration of lower
and upper trip time constraints to model the case where the planning system is used for
e.g. leisure/sport; 2) the derivation of a quantitative metric to evaluate the degree of
safety associated to a given route with respect to its topological profile and the speed
of motor vehicles along its segments; and 3) four different bio-inspired multi-objective
solvers (namely, NSGA-II [11], MOEA/D [12], SMS-EMOA [13], and SMPSO [14])
to efficiently balance the Pareto trade-off between the safety level and the distance of
the route, always subject to the imposed time constraints. The (pseudo) Pareto-optimal
set of routes produced by any of these can be informed to the user if the system so that
he/she has the freedom to choose the one that matches best his/her preferences with
respect to the considered objectives.

The proposed system has been assessed in a realistic environment using Open Trip
Planner (OTP [15]) as the simulation framework. Experimental results from three dif-
ferent use cases located in the city of Bilbao (Spain) are presented and discussed, all
using real data sources, namely, the Open Street Map of the city and its Digital Elevation
Model (DEM). The analysis of the obtained route portfolios evinces the practicality of
the proposed approach, and paves the way towards extending the problem formulation
so as to accommodate other manifold route metrics.

The rest of the paper is structured as follows. Section 2 formulates the bi-objective
optimization problem considered in this study, whereas Section 3 elaborates on the con-
sidered multi-objective heuristics. Section 4 describes in detail the deployed simulation
environment. Next, the experimentation performed is shown and discussed in Section
5. Finally, Section 6 ends the paper and outlines future research.

2 Problem Definition
As has been explained beforehand, the problem tackled in this work is the optimization
of bike routes, bearing in mind two different objectives (distance and safety of the route)
and the compliance with lower and upper time constraints. According to Fig. 1, the sce-
nario model on which this problem is formulated gravitates on the position (lat	, lon	)
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where all bike routes depart from, emulating e.g. a bike ride that a user is willing to en-
joy from home within his/her limited leisure time. For simplicity in subsequent algorith-
mic explanations, we assume that (lat	, lon	) ∈ [latmin, latmax]× [lonmin, lonmax],
i.e. the scenario and the produced routes themselves are located within a maximum
square area.

: Initial point

(lonmin, latmin)

(lonmax, latmax)

: Route destination
points

Distance

In
cl
in
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ti
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Fig. 1. Schematic diagram of the routing scenario tackled in this paper.

In this scenario a route ri will be given by a variable-length sequence of segments
(s1i , . . . , s

Ni
i ), where sji denotes the j-th segment of route ri and Ni the overall number

of segments of the entire route. Each segment sji is composed by a set of parameters,

sji
.
= {(latj,oi , lonj,o

i ), (latj,di , lonj,d
i ), dji , t

j
i , α

j
i , v

j,max
i } (1)

that characterize the segment in terms of its latitude/longitude extremes (o: origin, d:
destination), its length dji ∈ R+, the time tji ∈ R+ taken to traverse it by bike, its
inclination profile αj

i ∈ R[0, 90], and maximum speed vj,max
i ∈ R[0, V max] of the

road traffic along the segment, where V max is the maximum admissible road vehicle
speed as per the legislation of the scenario at hand. Given that we seek continuous
routes, they should all fulfill (lat1,oi , lon1,o

i ) = (lat	, lon	) and

(latj,di , lonj,d
i ) = (latj+1,o

i , lonj+1,o
i ), ∀j = 1, . . . , Ni − 1. (2)

Based on the above notation, the overall distance and time of the route will be given
by fD(ri)

.
=
∑Ni

j=1 d
j
i and T (ri)

.
=
∑Ni

j=1 t
j
i , i.e. the sum of segments’ distance/time.

Intuitively, the level of safety when a bike traverses route ri should be driven by
two different aspects: first, the inclination of its segments should be as close to 0 as
possible (namely, a flat segment) so that the rider does not loose control of the bike due
to either a high speed and risk to encounter unavoidable moving obstacles along the
segment (downhill), or a physically demanding uphill segment that could put in danger
the health of the biker and his/her capability to react against vehicles in the opposite
direction. All in all, it should be clear that the inclination of the segment as per αj

i

plays a crucial role when quantifying the degree of safety of a segment. Based on this
rationale and the notation introduced above, we propose a measure of route safety as

fS(ri)
.
=

Ni∑

j=1

(
dji/ cosα

j
i

)vj,max
i /V max

(3)

from where it is straightforward to note that the higher the value of fS(ri) is, the less
safe route ri will be. In other words, fS(ri) must be conceptually conceived as a mea-
sure of the risk assumed by the biker when traversing route ri, which should be mini-
mized in the problem formulation. The baseline user parameters required for stating the
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problem also include an upper bound Tmax for the trip time T (ri) needed to complete
route ri. Routes ri′ for which T (ri) > Tmax should not be allowed to appear in the
eventually output set of routes. Correspondingly, the minimum trip time is defined as a
fraction ρ ∈ R[0, 1] of Tmax, such that a feasible route ri should meet T (ri) ≥ ρ·Tmax

in all cases. This parameter ρ is input by the user to reflect his/her tolerance respect to
the admissible maximum time for the bike ride.

This notation being defined, the bike routing problem addressed in this paper can
be formulated as the discovery of a set of routes that balances their safety and distance
values in a Pareto optimal fashion satisfying, at the same time, lower and upper bounds
in regards to their total duration. Mathematically:

minimize
R ∈R

fS(r), maximize
R ∈R

fD(r), (4a)

subject to T (ri) ≤ Tmax, (4b)

T (ri) ≥ Tmin = ρ · Tmax, (4c)

(lat1,oi , lon1,o
i ) = (lat	, lon	) ∀ri ∈ R, , (4d)

(latj,di , lonj,d
i ) = (latj+1,o

i , lonj+1,o
i ), ∀j = 1, . . . , Ni − 1, (4e)

where R denotes a variable-length set of trip routes rooted on (lat	, lon	), and R the
number of all possible route sets satisfying this latter constraint.

3 Considered Solvers
We have chosen four population-based bio-inspired algorithms to solve the above bi-
objective problem in a computationally efficient fashion. As a result, not only we obtain
an insight of the solutions that can be obtained, but we can also determine which solver
provides routes with best Pareto quality in terms of convergence and diversity.

However, before proceeding with the explanation of the utilized solvers, we delve
into the strategy adopted to encode routes so that they can be handled by their heuristic
operators. In this regard the numerical encoding does not represent a route by itself, but
rather a set of factors that can be used to calculate a route by means of the OTP route
generation engine. This way, each candidate route (rp) within the P -sized populations
these algorithms is a vector comprising the following five values:

– Latitude latNp
p and longitude lonNp

p of the destination location of route rp. Rather
than using the true coordinates in the candidate, the relative difference between the
origin location (lat	, lon	) and the coordinates (latNp

p , lon
Np
p ) is instead used.

– Safety preference (Sp ∈ R[0, 1]), which stands for the priority that the OTP route
planner should grant to the safety of the route. If this value is high, routes with a high
safety will be better rated and output by the engine.

– Inclination preference (Ip ∈ R[0, 1]): the importance that the planner endows to the
aggregate inclination of the route.

– Duration preference (Dp ∈ R[0, 1]): the importance that the route planner gives to
the duration of the route.

These values are modified along the execution by means of the bio-inspired oper-
ators of every solver, repaired to ensure that Sp + Ip +Dp = 1 ∀rp in the population,
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and delivered to the OTP engine as new routing requests to produce routes based on the
new set of preferences. Once created, every newly produced route is evaluated in terms
of safety and distance, and then ranked and sorted as defined by the heuristic algorithm
at hand.

In this regard, three of the selected algorithms are NSGA-II [11], MOEA/D [12],
and SMS-EMOA [13], which are archetypal of Pareto dominance based, decomposi-
tion based, and indicator based evolutionary algorithms, respectively. We also added a
particle swarm optimization technique, SMPSO [16], which has shown a remarkable
performance in solving continuous multi-objectives problems as the one we are dealing
with. We briefly describe these metaheuristics next:

– NSGA-II (Non-dominated Sorting Genetic Algorithm II) is a generational genetic
algorithm which has become the most well-known and widely used multi-objective
algorithm since it was first proposed. It applies a Pareto ranking scheme to foster
the convergence to the Pareto front and the crowding distance density estimator to
promote the diversity of the front of solutions it is managing.

– MOEA/D (Multi-Objective Evolutionary Algorithm Based on Decomposition) is a
steady-state evolutionary algorithm based on an aggregative approach with the aim
of decomposing a multi-objective problem in a set of single-objective subproblems
that are solved at the same time by taking into account information of a number of
neighbors. We use in this paper the MOEA/DE version [17], which uses differential
evolution instead of the mutation and crossover operators of the original proposal.

– SMS-EMOA (S-Metric Selection EMOA) is also an steady-state evolutionary algo-
rithm which is based on NSGA-II but, instead of using the crowding distance density
estimator, it applies the concept of hypervolume contribution. The idea is that, af-
ter applying the ranking procedure, the solution belonging to the last rank having the
lowest contribution to the hypervolume of the set of solutions of that rank is removed.

– SMPSO (Speed-constrained Multi-objective PSO) is particle swarm optimization al-
gorithm whose main features is the use of a velocity constraint mechanism, to avoid
the particles to fly beyond the limits of the search space, and an external bounded-
sized archive to store the non-dominated solutions found during the search. This
archive is used also for leader selection and the crowding distance density estimator
is used to remove solutions when it becomes full.

4 Description of the Simulation Environment
As has been mentioned in previous sections, the developed route planning system hinges
on the route generation functionality provided by the OTP platform, an open source
framework for mono and multi-modal journey planning. It follows a client-server model,
and provides a map-based web and smartphone interface, as well as a REST API for
its use with third-party applications. OTP operates with different open data standards,
such as GeoTIFF, Protocol Buffers, General Transit Feed Specification (GTFS) and
Open Street Map (OSM). Different reason have motivated the use of this platform:

– OTP is open source in its entirety, easing its adaptation to the specific simulation
scenarios considered in this study.

– OTP efficiently works with OSM, providing the structure to automatically build the
street network.
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– OTP is well documented, updated, with an active, growing community of developers.
These situation facilitates the understanding and maintenance of the platform.

Fig. 2. Architecture of the deployed system.

The simulation platform developed in this study and architecturally illustrated in
Fig. 2 relies on the Java project of OTP available in [15]. Specifically, this repository
contains the complete code of the OTP system and the client for testing purposes. As
can be read in the documentation of the project, “it includes a REST API for journey
planning as well as a map-based Javascript client. Open Trip Planner can also cre-
ate travel time contour visualizations and compute accessibility indicators for planning
and research applications”. As OTP is open source, both parts have been adapted and
modified to accommodate the requirements of this study and to enable constraining the
routes in time, and the output of all segments comprising the generated route. Conse-
quently, several classes have been created in order to deploy these functionalities.

In order to focus the scope of this manuscript strictly on the heuristic domain,
implementation details on the modified OTP Java classes are not provided. Instead,
we just mention and describe two newly developed methods, which are crucial for
the understanding of the whole system: 1) evaluatePath(), recurrently called by
the algorithm to return the length and safety of the route provided as an input; and
2) completeRouteGenerator(), which returns the entire path calculated by the
OTP engine from its encoded representation for visualization and further analysis. Fi-
nally, it should be noted that the architecture also integrates the jMetal framework [18]
jointly with OTP for implementing the considered multi-objective solvers.

5 Experimental Setup
In order to shed light on the empirical performance of the 4 multi-objective optimization
algorithms considered to deal with the posed routing problem, several computer exper-
iments have been carried out over different square areas located in the city of Bilbao
(Spain), bounded by coordinates (latmin, latmax) = (lat	 − 0.1425, lat	 + 0.1425)
and (lonmin, lonmax) = (lon	−0.0665, lon	+0.0665). Differences between scenar-
ios yield from the selection of different initial points (lon	, lat	) for the routes, so that
topological changes in the urban areas enclosed by such squares are expected to arise
from the performed experiments. These selected scenarios are characterized by a flat, a
highly slopped (hilly) and a hybrid terrain profile. This tailored choice permits to verify
how the proposed system and the considered heuristic solvers behave in geographically
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diverse setups. Two different open data sources have been used for the deployment of
these real-world scenarios:

– OSM map files: the maps and street networks of the simulated scenarios have been
retrieved in the form of OSM map files from the Planet OSM public repository [19],
using the open tool BBBike [20] to download them in Protocolbuffer Binary Format
(PBF). The downloaded OSM tiles contain all nodes, ways and relations required
to build the map. OSM files are directly consumed by OTP, which automatically
constructs the full road network.

– Digital Elevation Model: the elevations of the streets of Bilbao is downloaded from
SRTM Tile Grabber6 and directly consumed by OTP in GeoTIFF format. This format
is a public domain metadata standard, which allows georeferencing information to be
embedded within a TIFF file [21]. OTP uses these files for assigning the correspond-
ing elevation to the entire street network, and it is employed for calculating the route
flatness and safety.

Table 1. Parameter setting of the heuristics considered in the experimental benchmark.

Algorithm Parameter Value

All

Population/swarm size 100 individuals/particles
Evaluations 5000
Independent runs 15
Mutation Polynomial mutation
| Probability 0.2 (once per every 5 decision variables)
| Distribution index ηm 20.0

NSGA-II
SMS-EMOA

Crossover Simulated binary crossover
| Probability 1.0
| Distribution index ηm 20

MOEA/D

Differential evolution scheme rand/1/bin
| CR 1.0
| F 0.5

Neighborhood size 20
Neighborhood selection probability 0.9
Max. number of replaced solutions 2

SMPSO
Archive size 100
Density estimator Crowding distance

As the bike routing is a continuous optimization problem, we have configured the
algorithms with commonly accepted settings, without any attempt at finding their best
parameter configuration. A summary of the parameters is included in Table 1. All the
algorithms have a population size of 100 individuals (or particles in the case of SMPSO)
and use a polynomial mutation operator which is applied with a probability of 0.2 (ac-
cording to the typical value of 1.0 / L, where L = 5 is the number of decision vari-
ables of the problem) and a distributed index equal to 20.0; the maximum number of
function evaluations has been fixed to 5000. Both NSGA-II and SMS-EMOA apply
a simulated binary crossover, with a probability of 1.0 and a distributed index equal
to 20.0. MOEA/D follows a rand/1/bin differential evolution scheme, with parameters
CR = 1.0 and F = 0.5. The values of the neighborhood size, the neighborhood selec-
tion probability, and maximum number of replace solutions are 20, 0.9, and 2, respec-
tively. SMSPO has an external archive of a maximum size of 100 particles and applies
the crowding distance density estimator.

6 http://dwtkns.com/srtm/
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For proving the robustness of the methods and extracting fair and rigorous conclu-
sions, 15 independent runs have been made per algorithm for all problem scenarios (see
next section). To assess the performance of the algorithms, we have used the so-called
hypervolume [22], a Pareto compliant quality indicator that takes into account both the
convergence and diversity of the Pareto front approximations returned by the solvers
included in the benchmark.

Since we deal with an optimization problem whose true Pareto front is unknown,
we have generated a reference Pareto front for each instance by combining all the non-
dominated solutions computed in all the executions of all the algorithms. This front
will be used as a reference to compute the hypervolume. Furthermore, in order to assess
whether the differences between the algorithm results have statistical significance, we
have applied the Wilcoxon rank-sum text, a non-parametric statistical hypothesis test
which allows for a pairwise comparison between two samples. A significance level of
5% has been considered, meaning that the differences are unlikely to have occurred by
chance with a probability of 95%.

5.1 Results and Discussion

To illustrate the fronts that each of the four compared algorithms have produced, we
include in Fig. 3 (next page) the approximations corresponding to the best hypervolume
values for the flat (first row), hybrid (second row) and hilly scenario (third row). To ease
the visualization of the solutions, the reference Pareto front is included as a continuous
line. We can observe how SMPSO excels at generating a set of solutions that are on
top of the reference Pareto front and that are uniformly spread, including the extreme
solutions. By contrast, MOEA/D fails to generate a front with accurate convergence and
widespread diversity.

The results of the hypervolume values obtained by the four metaheuristics are pre-
sented in Table 2, which includes the median and interquartile range of the 15 inde-
pendent runs per algorithm and problem instance. Those cells with a dark and light
gray backgrounds indicates, respectively, the best and second best indicator values. We
can observe that the particle swarm optimization algorithm SMPSO has produced the
best (highest) values in the three considered scenarios. NSGA-II and SMS-EMOA have
yielded, respectively, two and one second best values.

Table 2. Median and Inter Quartile Range (IQR) of the hypervolume values obtained by the algo-
rithms. Best and second best median results have dark and light gray backgrounds, respectively.

SMPSO NSGA-II MOEA/D SMS-EMOA
Flat scenario 5.80e− 018.8e−03 5.68e− 016.2e−03 5.27e− 017.5e−03 5.64e− 011.2e−02

Hybrid scenario 5.95e− 013.8e−03 5.79e− 011.0e−02 5.30e− 011.8e−02 5.74e− 011.2e−02

Hilly scenario 7.00e− 018.4e−03 6.13e− 015.0e−02 5.71e− 012.2e−02 6.20e− 018.2e−02

To determine whether the differences between pair of algorithms are statistically
significant, we have applied the Wilcoxon rank-sum test; the obtained results are in-
cluded in Table 3. In each cell, the three considered scenarios (plain, medium, and
high) are represented with one of the following symbols: “–” indicates that there not
statistical significance between the algorithms, “N” means that the algorithm in the row
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Fig. 3. Estimated Pareto fronts with the best hypervolume values obtained by the four compared
algorithms for the flat (first row), hybrid (second row) and hilly (third row) scenarios. The line
stands for the reference Pareto front approximation.

has yielded better results than the algorithm in the column with confidence, and “O” is
used when the algorithm in the column is statistically better than the algorithm in the
row. We can observe that all the differences are significant but the results of NSGA-
II and SMS-EMOA, so we can claim that SMPSO is the algorithm providing the best
overall performance in the context of the study carried out.

Table 3. Wilcoxon test results. Each cell contains a symbol per problem (flat, hybrid, hilly).

NSGA-II MOEA/D SMS-EMOA
SMPSO N N N N N N N N N
NSGA-II N N N − − −
MOEA/D O O O

The results provided by the hypervolume indicator are quantitative, in the sense that
they indicate which algorithm generates the fronts with better degrees of convergence
and diversity. However, they do not provide any insight about the quality of the solu-
tions. For that reason, we next include in Fig. 4 the reference Pareto fronts for each of
the three scenarios, and a visual representation of the routes corresponding to the points
in the estimated Pareto front of the hilly scenario. Indeed differences are visually clear
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in regards to the distance of every route: interesting is to note that the one in green tra-
verses a urban area with sharp slopes (namely, the urban core of the town of Portugalete
within the metropolitan area of Gran Bilbao).

Fig. 4. (Left) Reference Pareto fronts obtained for the three considered scenarios; (Right) routes
corresponding to the colored points in the reference Pareto front of the hilly scenario.

6 Conclusions and Further Work
In this work the design of time-constrained bike routes has been studied and approached
from a multi-criteria perspective. The focus has been placed on generating a group of
open-destination bike routes based on three input parameters: origin, maximum trip
time and tolerance. The problem has been modeled as a bi-objective paradigm balancing
two conflicting objectives: the distance of the route and its safety level, the latter blend-
ing together the inclination of segments composing the route, their length and the speed
of vehicles along each segment. For efficiently tackling this problem, four bio-inspired
multi-objective optimization methods have been used (namely, NSGA-II, SMS-EMOA,
MOEA/D, and SMPSO), and applied to three different real-world scenarios placed in
Bilbao, Spain. Experiments have been conducted in a realistic simulation environment
based on Open Trip Planner as the software simulation platform. The obtained results
reveal that the SMPSO solver outperforms its counterparts in the benchmark in terms
of Pareto optimality as gauged by their hypervolume indicator.

Several research lines will be tackled in the near future. In short term, additional
bio-inspired approaches are planned to be included in the benchmark to assess whether
they get to obtain better results in terms of Pareto spread and dominance. In the longer
term we intend to extend the problem formulation to add new objectives such as the
energy consumed by the user and air pollution in the route. Real open data will be
utilized to model this improved setup.
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Abstract. Lindenmayer systems (L-systems) are a formal grammar sys-
tem that iteratively rewrites all symbols of a string, in parallel. When
visualized with a graphical interpretation, the images have been par-
ticularly successful as a concise method for simulating plants. Creating
L-systems to simulate a given plant manually by experts is limited by
the availability of experts and time. This paper introduces the Plant
Model Inference Tool (PMIT) that infers deterministic context-free L-
systems from an initial sequence of strings generated by the system using
a genetic algorithm. PMIT is able to infer more complex systems than
existing approaches. Indeed, while existing approaches can infer D0L-
Systems where the sum of production successors is 20, PMIT can infer
those where the sum is 140. This was validated using a testbed of 28
known D0L-system models, in addition to models created artificially by
bootstrapping larger models.

Keywords: L-systems, inductive inference, genetic algorithm, plant modeling

1 Introduction

Lindenmayer systems (L-systems), introduced in [7], are a formal grammar sys-
tem that produces self-similar patterns that appear frequently in nature, and
especially in plants [11]. L-systems produce strings that get rewritten over time
in parallel. Certain symbols can be interpreted as instructions to create sequen-
tial images, which can be visually simulated by software such as the “virtual
laboratory” (vlab) [14]. Such simulations are useful as they can incorporate dif-
ferent geometries [11], environmental factors [1], and mechanistic controls [10],
and are therefore of use to simulate and understand plants. L-systems often
consist of small textual descriptions that require little storage compared to real
imagery. Certainly also, they can produce a simulation extremely quickly with
low cost computers in comparison to actually growing a plant.

An L-system is denoted by a tuple G = (V, ω, P ), which consists of an al-
phabet V (a finite set of allowed symbols), an axiom ω that is a word over V ,

? This research was supported in part by a grant from the Plant Phenotyping and
Imaging Research Centre.
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and a finite set of productions, or rewriting rules, P . A deterministic context-free
L-system or a D0L-system, has exactly one rule for each symbol in V of the form
A → x, where A ∈ V (the predecessor) and x is a word over V (the successor,
denoted by succ(A)). Words get rewritten according to a derivation relation,⇒,
whereby A1 · · ·An ⇒ x1 · · ·xn, where Ai ∈ V, xi is a word, and Ai → xi is in
P , for each i, 1 ≤ i ≤ n. Normally, one is concerned with derivations starting at
the axiom, ω ⇒ ω1 ⇒ ω2 ⇒ · · · ⇒ ωn. The sequence (ω1, . . . , ωn) is known as
the developmental sequence of length n.

Fig. 1. Fractal Plant after
7 generations [11].

One common alphabet for visualization is the tur-
tle graphics alphabet [11], so-called as it is imag-
ined that each word generated contains a sequence
of instructions that causes a turtle to draw an im-
age with a pen attached. The turtle has a state con-
sisting of a position on a (usually) 3D grid and an
angle, and the common symbols that cause the tur-
tle to change states and draw are: F (move forward
with pen down), f (move forward with pen up), +
(turn left), − (turn right), [ (start a branch), ] (end a
branch), & (pitch up), ∧ (pitch down), \(roll left), /
(roll right), | (turn around 180◦). For branching mod-
els, [ causes the state to be pushed on a stack and ]
causes the state to be popped and the turtle switches
to it. It is assumed that the right hand side of rewriting rules have paranthe-
ses that are properly nested. Additional symbols are added to the alphabet,
such as A and B, to represent the underlying growth mechanics. The “Frac-
tal Plant” L-system is inferred commonly [9, 13] and so is shown here as an
example: G = ({X,F}, X, {X → F [+X]F [−X]+X,F → FF}). After 7 genera-
tions, “Fractal Plant“ can produce the image in Fig. 1 after 7 generations. More
realistic 3D models may be produced with extensions of D0L-systems.

A difficult challenge is to determine an L-system that can accurately sim-
ulate a plant. In practice, this often involves manual measurements over time,
scientific knowledge, and is done by experts [12]. Although this approach has
been successful, it does have notable drawbacks. Producing a system manually
requires an expert that are in limited supply, and it does not scale to producing
arbitrarily many models. Furthermore, the more complex plant models require a
priori knowledge of the underlying mechanics of the plant, which are difficult and
time consuming to acquire. To address this, semi-automated (used as an aide for
the expert) [6, 8], and fully automated approaches [9, 13], have been introduced
to find an L-system that matches observed data. This approach has the poten-
tial to scale to constructing thousands of models, and also has the potential to
expose biomechanics rather than requiring its knowledge beforehand.

The ultimate goal of this research is to automatically determine a model
from a sequence of plant images over time. An intermediate step is to infer the
model from a sequence of strings used to draw the images. This is known as
the inductive inference problem, defined as follows. Given a sequence of strings
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α = (ω1, . . . , ωn), find a D0L-system, or if it exists, G = (V, ω, P ) such that
ω = ω0 ⇒ ω1 ⇒ · · · ⇒ ωn where α is the developmental sequence of length n.

This paper introduces the Plant Model Inference Tool (PMIT) that aims
to be a fully automated approach to inductive inference of L-systems. Towards
that goal, PMIT uses a genetic algorithm (GA) to search for an L-system to
match the words produced. This paper presents a different encoding scheme
than previous approaches, and shows that it is more effective for inferring D0L-
systems. Additionally, some logical rules based on necessary conditions are used
as heuristics to shrink the solution space. Between these two techniques, it is
determined that PMIT is able to infer L-systems where the sum of the production
successors is approximately 140 symbols in length; whereas, other approaches
are limited to about 20 symbols. Moreover, the testbed used to test PMIT is
significantly larger than previous approaches. Indeed, 28 previously developed
D0L-systems are used, and for these systems that PMIT properly inferred, it
did so in an average of 17.762 seconds. Furthermore, additional (in some sense
“artificial”) models are created by combining the existing models where the
combined length of the successors is longer than 140 symbols (which PMIT does
not solve), and then randomly removing “F” symbols until it can solve them.
This work can be seen as a step towards the goal of 3D scanning a plant over
time, converting the images into strings that describe how to draw them, then
inferring the L-system from the sequence of strings.

The remainder of this paper is structured as follows. Section 2 describes some
existing automated approaches for inferring L-systems. Section 3 describes the
logical rules used to shrink the solution space, and Section 4 discusses the genetic
algorithm. Section 5 will discuss the methodology used to evaluate PMIT and
the results. Finally, Section 6 concludes the work and discusses future directions.
Some details are omitted due to space constraints, but appear online [4].

2 Background

This section briefly describes some notation used throughout the paper, con-
tains a brief description of genetic algorithms since they are used as the search
mechanism here, then describes some existing approaches to L-system inference.

An alphabet is a finite set of symbols. Given an alphabet V , a word over V
is any sequence of letters written a1a2 · · · an, ai ∈ V, 1 ≤ i ≤ n. The set of all
words over V is denoted by V ∗. Given a word x ∈ V ∗, |x| is the length of x, and
|x|A is the number of A’s in x, where A ∈ V . Given two words x, y ∈ V ∗, then
x is a substring of y if y = uxv, for some u, v ∈ V ∗ and in this case y is said to
be a superstring of x. Also, x is a prefix of y if y = xv for some v ∈ V ∗, and x
is a suffix of y if y = ux for some u ∈ V ∗.

The GA is an optimization algorithm, based on evolutionary principles, used
to efficiently search N -dimensional (usually) bounded spaces [2]. In evolution-
ary biology, increasingly fit offspring are created over successive generations by
intermixing the genes of parents. An encoding scheme is applied to convert a
problem into a virtual genome consisting of N genes. Each gene is either a bi-
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nary, integer, or real value and represents, in a problem specific way, an element
of the solution to the problem. One common type of encoding is a real mapped
encoding, where the genes have a real value from 0 and 1 and different ranges
within are mapped contextually [2]. This encoding works best when the options
at each step of the problem are unknown or dependent on prior choices.

The GA functions by first creating an initial population (P ) of random solu-
tions. Each member of the population is assessed using a problem specific fitness
function. Then the GA, controlled by certain parameters, performs a selection,
crossover, mutation, and survival step until a termination condition is reached.
In the selection step, a set of pairs of genomes are selected from the population
with odds in proportion to their fitness, i.e. preferring more fit genomes. During
the crossover step, for each selected pair, a random selection of genes are copied
between the two; thereby, producing two offspring. Each gene has a chance of
being swapped equal to the control parameter crossover weight. The mutation
step takes each offspring and randomly changes zero or more genes to a random
value with each gene having a chance of being mutated equal to the mutation
weight. Then each offspring is evaluated using the fitness function. The offspring
are placed into the population and genomes are culled until the population is
of size P again. Usually, the most fit members are kept (elite survival). The
termination condition may be based on such criteria as finding a solution with
sufficient fitness, or hitting a pre-determined maximum number of generations.

Various approaches to L-system inference were surveyed in [3]. There are
several different broad approaches towards the problem: building by hand [11,12],
algebraic approaches [5, 9], using logical rules [9], and search approaches [13].
Since PMIT is a hybrid approach incorporating a search algorithm, GA, together
with logical rules to reduce intractability by shrinking the search space, this
section will examine some existing logic-based and search-based approaches.

Inductive inference has been studied theoretically (without implementation)
by several authors [3], e.g. Doucet [5]. He devised a method that uses solutions
to Diophantine equations to, in many cases, find a D0L-system that starts by
generating the input strings. A similar approach was implemented with a tool
called LGIN [9] that infers L-systems from a single observed string ω. They
devise a set of equations that relate the number of each symbol observed in
ω to the linear combination of the production values in the growth matrix.
LGIN is limited to two symbol alphabets, which is still described as “immensely
complicated” [9], and was evaluated on six variants of “Fractal Plant” [11] and
had a peak execution time of four seconds.

Runqiang et al. [13] propose to infer an L-system from an image using a GA.
Each gene is encoded to represent a symbol in each successor. The fitness function
matches the candidate system to the observed data using image processing. Their
approach is limited to an alphabet size of 2 and a maximum total length of all
successors of 14. Their approach is 100% successful for a variant of “Fractal
Plant” [11] with |V | = 1, and has a 66% success rate for a variant of “Fractal
Plant” [11] with |V | = 2. Although they do not list timings, their GA converged
after a maximum of 97 generations, which suggests a short runtime.
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3 PMIT Methodology for Logically Deducing Facts about
Successors

In this section, the methodology that is used by PMIT to reduce the size of the
solution space with heuristics — all of which are based on necessary conditions
for D0L-systems — will be described. Indeed, the success and efficiency of a
search algorithm is generally tied to the size of the solution space. As all these
conditions are mathematically true, this guarantees that a correct solution is
in the remaining search space (if there is a D0L-system that can generate the
input). In PMIT, logical rules are used to reduce the dimensional bounds in two
contexts. The first context is to determine a lower bound ` and upper bound u
on the number of each symbol B produced by each symbol A for each A,B ∈ V ,
henceforth called growth of B by A. Thus, two programming variables (A,B)min

and (A,B)max are created that change such that (A,B)min ≤ |succ(A)|B ≤
(A,B)max. A second context is a separate lower ` and upper bound u on the
length of each successor for each A ∈ V . Then, two programming variables
Amin and Amax are used such that Amin ≤ |succ(A)| ≤ Amax and their values
improve as the program runs. The bounds on growth and on lengths depend on
each other, so all the rules are run in a loop until the bounds stop improving.

For this paper, it is assumed that if a turtle graphic symbol has an identity
production (e.g. + → +), then this is known in advance. Typically, these sym-
bols do have identity productions. There are some instances where “F” may not,
(some variants of “Fractal Plant” [11]). In such a case, “F” is treated as a non-
turtle graphics symbol for the purposes of inferring the L-system. Also, all suc-
cessors are assumed to be non-empty, which are commonly used in practice when
developing models [11]. This implies that Amin is initialized to 1 for each A ∈ V .
For each turtle symbol T ∈ V , Tmin = Tmax = 1,(T, T )min = (T, T )max = 1 and
(T,A)min = (T,A)max = 0 for every A ∈ V,A 6= T .

3.1 Deducing Growth

Consider input α = (ω0, . . . , ωn), ωi ∈ V ∗, 0 ≤ i ≤ n with alphabet V . Deduction
of growth in PMIT is based on two mechanisms; the first being the determination
of so-called successor fragments, of which there are four types.

– A word ω is an A-subword fragment if ω must be a subword of succ(A).
– A word ω is an A-prefix fragment if ω must be a prefix of succ(A).
– A word ω is an A-suffix fragment if ω must be a suffix of succ(A).
– A word ω is an A-superstring fragment if ω must be a superstring of succ(A).

As PMIT runs, it can determine additional successor fragments, which can help
to deduce growth. Certain prefix and suffix fragments can be found for the first
and last symbols in each input word by the following process. Consider two words
such that ω1 ⇒ ω2. It is possible to scan ω1 from left to right until the first non-
turtle graphics symbol is scanned (say, A, where the word scanned is αA). Then,
in ω2, PMIT skips over the graphical symbols in α (since each symbol in α has
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a known identity production), and the next Amin symbols, β, (the current value
of the lower bound for |succ(A)|) must be an A-prefix fragment. Furthermore,
since branching symbols must be paired and balanced within a successor, if a [
symbol is met, the prefix fragment must also contain all symbols until a matching
] symbol is met. Similarly, an A-superstring fragment can be found by skipping
α symbols, then taking the next Amax symbols from ω2 (the upper bound on
|succ(A)|). If a superstring fragment contains a [ symbol without the matching ]
symbol, then it is reduced to the symbol before the unmatched [ symbol. Then,
lower and upper bounds on the growth of B by A ((A,B)min and (A,B)max)
for each B ∈ V can be found by counting the number of B symbols in any
prefix and superstring fragments respectively and changing them if the bounds
are improved. For a suffix fragment, the process is identical except from right to
left starting at the end of ω1. An example of this process appears in [4].

The second mechanism for deduction of growth is based on calculating the
number of times each symbol A ∈ V appears in word ωi above the number im-
plied from ωi−1 together with the current values of each lower bound (B,A)min,
for each B ∈ V . Formally, a programming variable for the accounted for growth
of a symbol A ∈ V for 1 ≤ i ≤ n, denoted as Gacc(i, A) is:

Gacc(i, A) :=
∑

B∈V
(|ωi−1|B · (B,A)min). (1)

The unaccounted for growth for a symbol A, denoted as Gua(i, A), is computed
as Gua(i, A) := |ωi|A −Gacc(i, A).

Then, (B,A)max is set (if it can be reduced) under the assumption that all
unaccounted for A symbols are produced by B symbols. Furthermore, (B,A)max

is set to be the lowest such value computed for any word from 1 to n, where
B occurs, as any of the n words can be used to improve the maximum. And,
|succ(B)|A must be less than or equal to (B,A)min plus the additional unac-
counted for growth of A divided by the number of B symbols (if there is at least
one; also the floor function is used since |succ(B)|A is a positive integer) in the
previous word, as computed by

(B,A)max := min
1≤i≤n,
|ωi−1|B>0

(
(B,A)min +

⌊
Gua(i,A)
|ωi−1|B

⌋)
. (2)

An example is presented in [4].

Once (B,A)max has been determined for every A,B ∈ V , the observed words
are re-processed to compute possibly improved values for (B,A)min. Indeed for
each (B,A), if x :=

∑
C∈V
C 6=B

(C,A)max, and x < |ωi|A, then this means that

|succ(B)|A must be at least
⌈
|ωi|A−x
|ωi−1|B

⌉
, and then (B,A)min can be set to this

value if its bound is improved. For example, if ωi−1 has 2 A’s and 1 B, and ωi

has 10 A’s, and (A,A)max = 4, then at most two A’s produce eight A’s, thus
one B produces at least two A’s (10 total minus 8 produced at most by A), and
(B,A)min can be set to 2.
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3.2 Deducing Successor Length

The deduction of Amin and Amax are found from two logical rules, one involving
the sum of the minimum and maximum growth over all variables, and one by
exploiting a technical mathematical property. The first rule simply states that
Amin is at least the sum of (A,B)min for every B ∈ V and similarly Amax is
at most the sum of (A,B)max for every B ∈ V . The second rule is trickier but
often improves the bounds for Amax and Amin for A ∈ V . This takes place in
steps. First, the maximum number of symbols that can be produced by A in ωi

is computed by: x := |ωi| −
∑

B∈V,B 6=A(Bmin · |ωi−1|B). If |ωi−1|A > 0, let:

Ai
max :=

⌊
x

|ωi−1|A

⌋
(3)

if its value is improved. It follows that Amax can be set to min 1≤i≤n,
|ωi−1|A>0

Ai
max, if

its value is improved. Next, now that these Ai
max values have been calculated, it

is sometimes possible to further improve the Amax and Amin values. Let Y i ∈ V ,
1 ≤ i ≤ n be such that Y i occurs the least frequently in ωi−1 with at least one
copy. The current value of Y i

max will be examined as computed by Equation 3;
note Y 1, . . . , Y n can be different. Let V i

max := Y i
max+

∑
B∈V,

B 6=Y i
Bmin. Then, V i

max

can allow refinement of the upper bound for each successor, as Amax may be
improved by assuming all other symbols produce their minimum and subtracting
from V i

max. Mathematically this is expressed as:

Amax := V i
max −

∑

B∈V,
B 6=A

Bmin (4)

for 1 ≤ i ≤ n, if A occurs in ωi−1, and if the new value is smaller, which has
the effect of the minimum over all i, 1 ≤ i ≤ n. Although it is not immediately
obvious that this formula is an upper bound on |succ(A)|, a mathematical proof
has been completed (omitted due to space constraints), and appears in [4] along
with an example of its use. Thus, Amax can be set in this fashion. Similarly,
Amin can be set by taking Y i that occurs most frequently.

4 Encoding for the L-system Inference Problem

In this section, the GA and encoding used by PMIT is described and contrasted
with previous approaches.

The efficient search of a GA is controlled, in part, by the settings of the
control parameters: population size, crossover weight, and mutation weight. The
process of finding the optimal control parameter settings is called hyperparameter
search. It was found via Random Search (details on methodology used in [4])
that the optimal parameter settings were 100 for population size, 0.85 crossover
weight, and 0.10 for mutation weight. These parameters are henceforth used.

The fitness function for PMIT compares the symbols in the observed data
to the symbols in the words produced by the candidate solution position by
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position. An error is counted if the symbols do not match or if the candidate
solution is too long or short. The base fitness is the number of errors divided by
total number of symbols. If the candidate solution produces more than double
the number of symbols expected, it is not evaluated and assigned an extremely
high fitness so that it will not pass the survival step. Since errors early on in
the input words ω0, . . . , ωn will cause errors later, a word ωi, is only assessed
if there are no errors for each preceding word, and 1.0 is added to F for each
unevaluated word. This encourages the GA to find solutions that incrementally
match more of the observed words. PMIT is also evaluated using brute force,
which is guaranteed to find the most fit solution and it was found that the
solution found by the GA matches that found by brute force, showing that this
fitness function is effective at finding an optimal solution.

PMIT uses three termination conditions to determine when to stop running.
First, PMIT stops if a solution is found with a fitness of 0.0 as such a solution
perfectly describes the observed data. Second, PMIT stops after 4 hours of ex-
ecution if no solution has been found. Third, PMIT stops when the population
has converged and can no longer find better solutions. This is done by recording
the current generation whenever a new best solution is found as Genbest. If after
an additional Genbest generations, no better solutions are found, then PMIT
terminates. To prevent PMIT from terminating early due to random chance,
PMIT must perform at least 1,000 generations for the third condition only. This
third condition is added to prevent the GA from becoming a random search
post-convergence and finding an L-system by chance skewing the results.

The encoding scheme used most commonly in literature (e.g., [8, 13]) is to
have a gene represent each possible symbol in a successor. The number of genes
for the approaches in literature varies due the specific method they use to decode
the genome into an L-system, although they are approximately the total length
of all successors combined. With this approach, each gene represents a variable
from V (encoded as an integer from 1 to |V |). However, in some approaches (and
PMIT) the decoding step needs to account for the possibility that a particular
symbol in a successor does not exist (represented by �). When the possibility of
an � exists, such genes have a range from 1 to |V |+ 1. As an example, assume
V = {A,B} and Amin = 2, Amax = 3, Bmin = 1, Bmax = 3. For A, it is certain
to have at least two symbols in the successor and the third may or may not exist.
So, the first three genes represent the symbols in succ(A), where the first two
genes have each possible values from {A,B} and the third gene has {A,B,�}.

Next the improvements made to the genomic structure defined by the basic
encoding scheme will be described. Although they are discussed separately for
ease of comprehension, all the improvements are used together.

PMIT uses the bounds and successor fragments to create a genomic structure.
For example, if V = {A,B}, Amin = 1, and Amax = 3, then succ(A) can be ex-
pressed as the genomic structure of {A,B}, {A,B,�}, {A,B,�}. If there is an A-
prefix of B, then the genomic structure can change to {B}, {A,B,�}, {A,B,�}
since the first symbol in succ(A) is B, essentially eliminating the need for the
first gene. This is similar for an A-suffix. The second improvement to the basic
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encoding scheme further reduces the solution space by eliminating impossible
solutions. When building the successor, PMIT first places the symbols known to
be in succ(A). For each successor,

∑
A,B∈V (A,B)min genes are created with a

real value range between 0 and 1. Since these symbols must exist, the mapping
selects an unused position within the successor. After these symbols are placed,
if any additional symbols are needed up to the value of Amax, then PMIT selects
the remainder allowing the option of using �, ensuring that (A,B)max is not
violated for any A,B ∈ V ; i.e. the bounds computed by the heuristics shown in
Section 3 ensure that the candidate solutions are always valid, and the genes’
values are dynamically interpreted to ensure that the bounds are not violated.
Further details and examples are in [4].

Lastly, it was determined that since new non-graphical symbols can only be
produced by non-graphical symbols, it is possible to, at first, ignore the graphical
symbols over a smaller alphabet Vim. Then, one can search for the successors over
V ∗im, which is a simpler problem. For example, if A→ F [+F ]B and B → F [-F ]A,
then with Vim = {A,B} it is only necessary to find A → B and B → A. Each
graphical symbol can be added in one at a time. In the example above, the
second step might add + to Vim and find A → +B and B → A. Solving these
smaller problems is more efficient as the individual search spaces are smaller and
when summed are smaller than the solution space when trying to find the full
successor in one step. Additional details, including the use of successor fragments
to further simplify the number of genes needed, are omitted and appear in [4].

5 Data, Evaluation, and Results

To evaluate PMIT’s ability to infer D0L-systems, ten fractals, six plant-like
fractal variants inferred by LGIN [9,11], and twelve other biological models were
selected from the vlab online repository [14]. The biological models consist of ten
algaes, apple twig with blossoms, and a “Fibonacci Bush”. The dataset compares
favourably to similar studies where only some variants of one or two models are
considered [9, 13]. The data set is also of greater complexity by considering
models with alphabets from between 2 to 31 symbols compared to two symbol
alphabets [9,13]. However, there remain gaps both in terms of successor lengths
and alphabet size. Hence, additional L-systems are created by bootstrapping;
that is, by combining successors from multiple L-systems to create new “fake”
systems with every combination of alphabet size from 3 to 25 in increments of 2
and longest successor length from 5 to 25 in increments of 5. To get successors
of the proper length some “F” symbols were trimmed from longer successors.
These are called generated L-systems.

Two metrics are used to measure success. Success rate (SR) is the percentage
of times PMIT can find any L-system that describes the observed data. Mean
time to solve (MTTS) is the time taken to solve the models (measured using a
single core of an Intel 4770 @ 3.4 GHz with 12 GB of RAM on Windows 10).
PMIT stops execution at 4 hours (14400 seconds) calling the search a failure, as
more than this time is not practical relative to other tools in the literature.
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5.1 Results

Three programs were evaluated. The first is PMIT (implemented in C++ us-
ing Windows 10), the second is a restriction of PMIT that uses a brute force
algorithm without the GA or logical rules, and the existing program LGIN. No
comparison is made to the work by Runqiang et al. [13] as LGIN is strictly
better; indeed, LGIN is the best approach that could be found in literature
making it the best algorithm to which PMIT can be compared. The compar-
ison between brute force and GA shows the effects of using GA on MTTS.
Results are shown in Table 1. No SR is shown for LGIN as it is not explicitly
stated; however, it is implied to be 100% [9] for all rows where a time is writ-
ten. The variants used by LGIN [9, 11] are the six Fractal Plants. In general,
PMIT is fairly successful at solving the fractals, the “Fractal Plant” variants,
and also Ditria reptans. The success rates are all either 0% or 100%, indicat-
ing that a problem is either solved or not. It was observed that PMIT was
able to solve many other models excluding the F and f symbols, as indicated
in the “Infer Growth” column. For example, PMIT inferred for Aphanocladia
that A → BA, B → U [−C]UU [+/C/]U ; however, it was not able to then infer
C → FFfFFfFFfFF [-F 4]fFFfFF [+F 3]fFFfFF [-FF ]fFFf . This is in-
teresting as the growth mechanisms might be more complicated for a human to
infer than the lines represented by the F and f symbols. Therefore, PMIT is a
useful aide to human experts even when it cannot infer the complete L-system.

For the generated models, Figure 2 gives one point for every L-system (gen-
erated or not) tested with PMIT. A model is considered solved if there is a 100%
success rate and unsolved otherwise. It is evident that the figure shows a region
described by alphabet size and longest successor length that PMIT can reliably
solve. PMIT can infer L-systems with |V | = 17, if the successors are short (5)
and can infer fairly long successors (25) when |V | = 3. Computing the sum of
successor words

∑
A∈V |succ(A)|, then PMIT is able to infer L-systems where

such a sum is less than 140, which compares favorably to approaches in litera-
ture where the sum is at most 20. Overall, in terms of MTTS, PMIT is generally
slower than LGIN [9] for |V | = 2 although is still practically fast for these L-
systems (less than 35 seconds); however, PMIT can reliably infer L-systems with
larger alphabet sizes and successor lengths and still does so with an average of
17.762 seconds. Finally, the brute force algorithm required a MTTS of 621.998
seconds. Hence, the logical rules and the GA provide considerable improvement.

6 Conclusions and Future Directions

This paper introduced the Plant Model Inference Tool (PMIT) as a hybrid ap-
proach, combining GA and logical rules, to infer deterministic context-free L-
systems. PMIT can infer systems where the sum of the successor lengths is less
than or equal to 140 symbols. This compares favourably to existing approaches
that are limited to one or two symbol alphabets, and a total successor length less
than or equal to 20 [9, 13]. Although PMIT is slower than existing approaches
for “Fractal Plant” which has a small (2) alphabet [9, 13] with a MTTS of 35
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Model
PMIT Brute Force LGIN [9]

SR MTTS (s) Infer Growth SR MTTS (s) MTTS (s)

Algae [11] 100% 0.001 n/a 100% 0.001 -

Cantor Dust [11] 100% 0.001 n/a 100% 0.001 -

Dragon Curve [11] 100% 0.909 n/a 100% 4.181 -

E-Curve [11] 0% 14400 Yes 0% 14400 -

Fractal Plant v1 [9, 11] 100% 33.680 n/a 100% 163.498 2.834

Fractal Plant v2 [9, 11] 100% 0.021 n/a 100% 5.019 0.078

Fractal Plant v3 [9, 11] 100% 0.023 n/a 100% 5.290 0.120

Fractal Plant v4 [9, 11] 100% 0.042 n/a 100% 6.571 0.414

Fractal Plant v5 [9, 11] 100% 34.952 n/a 100% 171.003 0.406

Fractal Plant v6 [9, 11] 100% 31.107 n/a 100% 174.976 0.397

Gosper Curve [11] 100% 71.354 n/a 100% 921.911 -

Koch Curve [11] 100% 0.003 n/a 100% 0.023 -

Peano [11] 0% 14400 Yes 0% 14400 -

Pythagoras Tree [11] 100% 0.041 n/a 100% 2.894 -

Sierpenski Triangle v1 [11] 100% 2.628 n/a 100% 267.629 -

Sierpenski Triangle v2 [11] 100% 0.086 n/a 100% 128.043 -

Aphanocladia [14] 0% 54.044 Yes 0% 14400 -

Dipterosiphonia v1 [14] 0% 14400 No 0% 14400 -

Dipterosiphonia v2 [14] 0% 14400 Yes 0% 14400 -

Ditira Reptans [14] 100% 73.821 n/a 100% 6856.943 -

Ditira Zonaricola [14] 0% 74.006 Yes 0% 14400 -

Herpopteros [14] 0% 81.530 Yes 0% 14400 -

Herposiphonia [14] 0% 298.114 Yes 0% 14400 -

Metamorphe [14] 0% 14400 Yes 0% 14400 -

Pterocladellium [14] 0% 14400 No 0% 14400 -

Tenuissimum [14] 0% 14400 No 0% 14400 -

Apple Twig [14] 0% 14400 No 0% 14400 -

Fibonacci Bush [14] 0% 14400 Yes 0% 14400 -

Table 1. Results for PMIT, Brute Force, and LGIN [9], on existing L-system models.

Fig. 2. L-Systems Solved with 100% SR by alphabet size and longest successor length.
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seconds or less compared to 2 seconds or less, PMIT is still practically fast. Fur-
thermore, existing approaches are limited to 2 symbol alphabets while PMIT can
infer some L-systems with up to 17 symbol alphabets with longer successors.

For future work, methods will be investigated to further extend the limits
of alphabet size and successor length. Also, a main focus will be on the ability
to properly infer the drawing pattern likely using image processing techniques,
perhaps taking advantage of techniques devised here to sub-divide alphabets.
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Abstract. This paper develops a surrogate-assisted particle swarm opti-
mization framework for expensive constrained optimization called CONO-
PUS (CONstrained Optimization by Particle swarm Using Surrogates).
In each iteration, CONOPUS considers multiple trial positions for each
particle in the swarm and uses surrogate models for the objective and
constraint functions to identify the most promising trial position where
the expensive functions are evaluated. Moreover, the current overall best
position is refined by finding the minimum of the surrogate of the ob-
jective function within a neighborhood of that position and subject to
surrogate inequality constraints with a small margin and with a distance
requirement from all previously evaluated positions. CONOPUS is im-
plemented using radial basis function (RBF) surrogates and the resulting
algorithm compares favorably to alternative methods on 12 benchmark
problems and on a large-scale application from the auto industry with
124 decision variables and 68 inequality constraints.

Keywords: particle swarm optimization, constrained optimization, sur-
rogate model, radial basis function expensive function

1 Introduction

In many engineering optimization problems, the objective and constraint func-
tions are black-box in that their mathematical expressions are not explicitly
available. Moreover, accurate gradient information is often not available and so
classical optimization methods are not applicable. Particle swarm optimization
(PSO) (Kennedy and Eberhart [1]) is among the most popular metaheuristics
for solving these problems. In the PSO paradigm, the population of solutions
simulates the behavior of a swarm of agents or particles, such as a flock of birds
or a school of fish, as they collectively attempt to find some optimal state.

Numerous variants of PSO have been proposed and shown to be effective on
a wide variety of problems (e.g., [2], [3], [4], [5]). Moreover, many PSO meth-
ods have been developed to handle constraints (e.g., [6],[7],[8],[9]). Now there are
many optimization problems for which the objective and constraint function val-
ues are obtained from time-consuming computer simulations. In these situations,
only a relatively small number of simulations can be carried out for the optimiza-
tion process. Hence, surrogates have been used to assist PSO by reducing the
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number of function evaluations needed to obtain good solutions (e.g., Parno et
al. [10], Jiang et al. [11], Tang et al. [12], Sun et al. [13]). These surrogate-assisted
PSO methods are designed for bound-constrained problems where only the ob-
jective function is expensive. There are very few, if any, surrogate-assisted PSO
approaches where surrogates are used to approximate both the objective and
constraint functions. Moreover, there are relatively few surrogate-assisted PSO
methods that can be used for high-dimensional problems with over 100 decision
variables (e.g., Sun et al. [13]). However, there are surrogate-assisted evolution-
ary algorithms for constrained problems (e.g., Regis [14]) and non-evolutionary
methods that use surrogates to model the objective and constraints (e.g., Ba-
sudhar et al. [15], Regis [16], Bagheri et al. [17]).

This paper solves constrained optimization problems of the form:

min {f(x) : G(x) = (g1(x), . . . , gm(x)) ≤ 0, ℓ ≤ x ≤ u} (1)

where f, g1, . . . , gm are functions whose values at an input x ∈ Rd are obtained
from a deterministic and expensive computer simulation. The region [ℓ, u] ⊂ Rd

defined by the bounds is referred to as the search space for problem (1). Here, one
simulation for a given input x ∈ [ℓ, u] yields the values of f(x) and G(x). This pa-
per assumes that accurate gradient information for the objective and constraint
functions are not available. Problem (1) is denoted by CBOP(f, G, [ℓ, u]).

Since standard PSO is not expected to be effective when the objective and
constraint functions are expensive, this paper develops a surrogate-based ap-
proach called CONOPUS (CONstrained Optimization by Particle swarm Using
Surrogates) to reduce the number of simulations in PSO for constrained prob-
lems. This method can be used for problems involving hundreds of decision
variables and many black-box inequality constraints. In each iteration, CONO-
PUS considers multiple trial positions for each particle in the swarm and then
uses surrogate models for the objective and constraint functions to identify the
most promising trial position. The simulations yielding the objective and con-
straint function values are then performed only at these promising trial positions.
Moreover, the current overall best position is refined by finding the minimum
of the surrogate of the objective function within some search radius of that po-
sition and subject to surrogate inequality constraints with a small margin and
with a distance requirement from previously visited positions. In the numerical
experiments, CONOPUS is implemented using RBF surrogates and the result-
ing CONOPUS-RBF algorithm is compared to alternative methods, including
APSO (Accelerated Particle Swarm Optimization) (Yang [18]) and another PSO
for constrained problems, an RBF-assisted PSO without local refinement, and an
RBF-assisted evolutionary algorithm called CEP-RBF (Regis [14]), on 12 bench-
mark problems and on the large-scale MOPTA08 problem from the auto industry
(Jones [19]) with 124 decision variables and 68 black-box inequality constraints.
The results show that CONOPUS-RBF outperforms the other PSO-based ap-
proaches and is competitive with CEP-RBF on the problems used.
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2 Constrained Particle Swarm Using Surrogates

2.1 Overview of the Proposed Method

As mentioned above, the use of surrogates in PSO have mostly been limited
to bound constrained problems where only the objective function is expensive.
This paper develops a new surrogate-assisted PSO framework for constrained
black-box optimization called CONOPUS (CONstrained Optimization by Par-
ticle swarm Using Surrogates) that extends the OPUS framework for bound-
constrained black-box optimization (Regis [20]). As in OPUS, multiple trial po-
sitions for each particle are considered in each iteration. However, in CONOPUS,
there are now surrogate models for each inequality constraint function in addi-
tion to the surrogate for the objective function. These surrogates are updated in
every iteration and, for each particle, they are used to identify the most promis-
ing among a large number of trial positions for this particle. Then, each particle
is moved to the most promising trial position and then the expensive simulation
is carried out only at these promising positions. In addition, CONOPUS refines
the current overall best position by finding a minimizer of the updated surrogate
model of the objective function within a relatively small radius around that posi-
tion (and within the bounds), subject to surrogate inequality constraints with a
small margin, and subject to a distance requirement from previously evaluated
points. The idea of a margin for the constraints was introduced in Regis [16]
and it is meant to facilitate the generation of feasible sample points, while the
distance requirement is meant to prevent the algorithm from generating sample
points that are close to previous sample points. The solution to this optimization
subproblem is referred to as a local refinement point. The expensive simulation
is then also carried out at this point. Hence, CONOPUS is essentially an ac-
celerated PSO for constrained problems with the surrogates guiding where each
particle should go and helping to refine the current overall best position.

2.2 Algorithmic Framework

A constrained optimization algorithm needs to be able to compare two infeasible
solutions in the search space [ℓ, u] and determine which one is more desirable.
This can be accomplished by means of a constraint violation (CV) function,
denoted by VG(x), which measures the degree of constraint violation of a point
x ∈ [ℓ, u] with respect to the constraint function G(x). Commonly used examples
are VG(x) =

∑m
j=1[max{gj(x), 0}] and VG(x) =

∑m
j=1[max{gj(x), 0}]2, and here,

the former is used. Now given the objective function f and a CV function VG,
the definition below clarifies what is meant by an improving solution.

Definition 1. Let [ℓ, u] ⊆ Rd be the search space and let G(x) be the constraint
function for problem (1). Moreover, let D =

{
x ∈ Rd : ℓ ≤ x ≤ u, G(x) ≤ 0

}

be the feasible region of the problem. A point x1 ∈ [ℓ, u] is an improvement
over x2 ∈ [ℓ, u] if one of the following conditions hold: (a) x1, x2 ∈ D and
f(x1) < f(x2); (b) x1 ∈ D but x2 ̸∈ D; or (c) x1, x2 ̸∈ D and VG(x1) < VG(x2).
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Below (Algorithm 1) is the CONOPUS framework for constrained PSO us-
ing surrogates that extends the OPUS framework in Regis [20] to constrained
optimization. In every iteration of a PSO algorithm, each particle is represented
as a point in the search space with an associated velocity vector. This velocity
vector is updated by using a linear combination of the velocity in the previous
iteration, the direction of the best position so far of the particle, and the di-
rection of the best position so far of any of the particles. The weights for the
last two components of this linear combination vary randomly from iteration to
allow for the exploration of the search space. Assume for now that a feasible
starting point is given but the method can be extended to deal with infeasible
starting points by considering a two-phase approach as in Regis [16] where the
first phase consists of finding a feasible point while the second phase proceeds
in the same manner described below.

In the notation below, s denotes the number of particles and t denotes the
time period. Here, only discrete time periods t = 0, 1, 2, . . . are considered. More-
over, x(i)(t) represents the position of particle i, where i = 1, . . . , s, during

time t and x
(i)
j (t) represents the jth coordinate or component of x(i)(t), where

j = 1, . . . , d. That is, x(i)(t) = (x
(i)
1 (t), x

(i)
2 (t), . . . , x

(i)
d (t)). Moreover, y(i)(t) is

the best position visited by particle i while ŷ(t) is the best position visited by
any of the particles up to time t. In addition, v(i,ℓ)(t) and x(i,ℓ)(t) are the ℓth
trial velocity and ℓth trial position, respectively, for particle i during time t.

The CONOPUS framework begins by evaluating the points of the given
space-filling design over the search space [ℓ, u] (Step 1). Then the initial swarm
positions are selected to be the s best points of the space-filling design with re-
spect to the objective function f and constraint violation function VG (Step 2).
In Step 3, the initial particle velocities are determined using the half-diff method
[21]. Next, in Step 4, the best position for each particle is initialized to the start-
ing position of the particle. Moreover, the overall best position is initialized to
the best position among the starting positions in terms of f and VG. In addition,
the collection of local refinement points E0 is initialized to the empty set.

Next, Step 5 fits m + 1 surrogate models s
(0)
t (x), s

(1)
t , . . . , s

(m)
t , one for the

objective function and one for each of the constraint functions, using all available
data points. These data points come from all positions visited by any particle
(given by

∪t
j=0

∪s
i=1{x(i)(j)}) and from all local refinement points (given by Et).

Then, Step 6 determines the new position of each particle by first considering
multiple trial velocities within the velocity limits for that particle (Step 6.1(a)),
generating the corresponding trial positions (Step 6.1(b)), projecting the trial
positions into the bounds in case they leave the search space (Step 6.1(c)), and
then using the surrogate to select the most promising among the trial positions
and then choosing this to be the new position of the given particle (Step 6.2).
Once the new positions for the particles have been determined, the simulator
is then run at these positions to obtain the objective and constraint function
values (Step 7). Again, the best position for each particle and the overall best
position by any particle are updated (Step 8).
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Algorithm 1 CONstrained Optimization by Particle swarm Using Surrogates.

Inputs: (1) CBOP(f, G, [ℓ, u]); (2) CV function VG(x); (3) population size: s; (4)
space-filling design: {z(1), . . . , z(k)} ⊆ [ℓ, u] with k ≥ s; (5) inertial weighting factor
for each iteration: i(t), where t is the iteration number; (6) cognition parameter:
µ; (7) social parameter: ν; (8) minimum and maximum velocities: vmin and vmax;
(9) number of trial positions for each particle: r; (10) type of surrogate model; (11)
optimization solver for local refinement; (12) search radius for local refinement:
∆ > 0; (13) distance requirement from previous sample points: ξ > 0; (14) initial
margin for the surrogate inequality constraints: ϵ > 0; (15) distance threshold to
determine if points are too close: δ > 0; (16) maximum iterations: Tmax

Output: The best point found by the algorithm.

1. Evaluate Design. For i = 1, . . . , k, run simulator to obtain f(z(i)) and G(z(i)).
2. Determine Initial Swarm Positions. Choose initial swarm positions x(1)(0),

. . . , x(s)(0) to be the s best points from {z(1), . . . , z(k)} according to f and VG.
3. Determine Initial Particle Velocities. For i = 1, . . . , s, generate u(i) uniformly

at random on [ℓ, u] and set v(i)(0) = 1
2
(u(i) − x(i)(0)).

4. Initialize Best Position for Each Particle and Overall Best. Set y(i)(0) =
x(i)(0), i = 1, . . . , s, and let ŷ(0) be the best point in {y(1)(0), . . . , y(s)(0)} with
respect to f and VG. Set the iteration counter t = 0 and Et = ∅.

5. Fit Surrogates. Use all previous sample points

(
t∪

j=0

s∪

i=1

{x(i)(j)}
)∪

Et to build

surrogates s
(0)
t (x), s

(1)
t , . . . , s

(m)
t for the objective and constraint functions.

6. Determine New Particle Positions. For i = 1, . . . , s
6.1 Generate Trial Positions. For ℓ = 1, . . . , r

(a) (Generate Trial Velocities) For j = 1, . . . , d

v
(i,ℓ)
j (t + 1) = i(t)v

(i)
j (t) + µω

(i)
1,j(t)(y

(i)
j (t)− x

(i)
j (t))

+ νω
(i)
2,j(t)(ŷj(t)− x

(i)
j (t)), where ω

(i)
1,j(t), ω

(i)
2,j(t) ∼ U [0, 1]

v
(i,ℓ)
j (t + 1) = min(max(vmin, v

(i,ℓ)
j (t + 1)), vmax)

End for.
(b) (Generate Trial Positions) x(i,ℓ)(t + 1) = x(i)(t) + v(i,ℓ)(t + 1)
(c) (Project Trial Positions) x(i,ℓ)(t + 1) = proj[ℓ,u](x

(i,ℓ)(t + 1))
End for.

6.2 Select Promising Position Using Surrogate. Use the surrogate model
st(x) to select the most promising trial position for particle i among the points
{x(i,1)(t+1), x(i,2)(t + 1), . . . , x(i,r)(t+1)}. Let x(i)(t+1) be the most promis-
ing trial position and let v(i)(t + 1) be the associated trial velocity.

7. Evaluate Swarm Positions. For each i = 1, . . . , s, run the simulator to obtain
f(x(i)(t + 1)) and G(x(i)(t + 1)).

8. Update Best Position for Each Particle and Overall Best. Set ŷ(t + 1) =
ŷ(t). For i = 1, . . . , s
(a) If x(i)(t + 1) is an improvement over y(i)(t + 1), then

Set y(i)(t + 1) = x(i)(t + 1).
If y(i)(t + 1) is an improvement over ŷ(t + 1), then ŷ(t + 1) = y(i)(t + 1).

(b) Else
Set y(i)(t + 1) = y(i)(t).

End if.

9. Refit Surrogates. Use all previous sample points

(
t+1∪

j=0

s∪

i=1

{x(i)(j)}
)∪

Et to refit

surrogates s
(0)
t (x), s

(1)
t , . . . , s

(m)
t for the objective and constraint functions.
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Algorithm 2 CONOPUS algorithm (continued)

10. Perform Local Refinement of Overall Best Position. Relabel all previous
sample points by v1, . . . , vn and let v∗

n be the best feasible point so far. Solve
the subproblem:

min s
(0)
t (x)

s.t. x ∈ Rd, ℓ ≤ x ≤ u

∥x− v∗
n∥ ≤ ∆, ∥x− vj∥ ≥ ξ, j = 1, . . . , n

s
(i)
t (x) + ϵ ≤ 0, i = 1, 2, . . . , m

(2)

11. Check if Feasible Solution to Subproblem was Found. If a feasible solu-
tion is found for Problem (2), then let x∗

t+1 be the solution obtained. Otherwise, let
x∗

t+1 be the best solution with respect to f and VG (infeasible for (2)) among a set
of randomly generated points within the search region {x ∈ [ℓ, u] : ∥x−v∗

n∥ ≤ ∆}.
12. Determine if Minimizer of Surrogate is Far From Previous Points. If

x∗
t+1 is at least of distance δ from all previously evaluated points, then do

12.1 Evaluate Minimizer of Surrogate. Run the simulator to obtain f(x∗
t+1)

and G(x∗
t+1).

12.2 Update Overall Best Position and Local Refinement Points. If
x∗

t+1 is an improvement over ŷ(t + 1), then ŷ(t + 1) = x∗
t+1 and set

Et+1 = Et ∪ {x∗
t+1}. Else, set Et+1 = Et.

13. Check Termination Condition. If t < Tmax, then reset t← t + 1 and go back
to Step 5. Else, STOP.

The algorithm then refits the surrogate models s
(0)
t (x), s

(1)
t , . . . , s

(m)
t to in-

corporate the newly evaluated points (Step 9) in preparation for local refinement
of the overall best point (Step 10). In this step, an optimization solver finds a

global minimizer x∗
t+1 of the surrogate for the objective s

(0)
t (x) within a ball of

radius ∆ centered at the current overall best point ŷ(t + 1), within the search
space, subject to surrogate inequality constraints with a margin ϵ, and with a
distance requirement of ξ from all previous sample points. In the numerical im-
plementation, it is enough to find an approximate solution to this optimization
subproblem. If the subproblem solution (local refinement point) is not too close
to any previous sample point (at least distance δ), then the simulator is run at
this point (Step 12.1), and then the overall best position and the set of local
refinement points are also updated (Step 12.2). Finally, the algorithm goes back
to Step 5 if the termination condition has not been satisfied. Otherwise, the
algorithm stops and returns the overall best position found (Step 13).

2.3 A Radial Basis Function Model

CONOPUS can be implemented using any type of surrogate model that is contin-
uously differentiable and whose gradients are easy to calculate. This study uses
the radial basis function (RBF) interpolation model in [22] and the resulting
algorithm is referred to as CONOPUS-RBF. This RBF model has been used in
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various surrogate-based optimization methods (e.g., [14, 16]). Fitting this model
involves solving a linear system with good theoretical properties and it differs
from the typical training methods for RBF networks in machine learning.

Suppose we are given n distinct points u(1), . . . , u(n) ∈ Rd with function
values h(u(1)), . . . , h(u(n)), where h is the objective or one of the constraint
functions. CONOPUS-RBF uses an interpolant of the form

s(x) =

n∑

i=1

λiϕ(∥x − u(i)∥) + p(x), x ∈ Rd, (3)

where ∥ · ∥ is the Euclidean norm, λi ∈ R for i = 1, . . . , n, p(x) is a linear
polynomial in d variables, and ϕ has the cubic form: ϕ(r) = r3. Other possible
choices for ϕ include the thin plate spline, multiquadric and Gaussian forms. We
use a cubic RBF because of previous success with this model (e.g., [14, 20]).

3 Numerical Experiments

CONOPUS-RBF is compared with alternative methods on the MOPTA08 bench-
mark problem [19] from the auto industry. The MOPTA08 problem involves
finding the values of the decision variables (e.g., shape variables) that minimize
the mass of the vehicle subject to performance constraints (e.g., crashworthiness,
durability). It has one black-box objective function to be minimized, 124 decision
variables that take values on a continuous scale from 0 to 1, and 68 black-box
inequality constraints that are well normalized [19]. A Fortran code for this
problem is available at http://www.miguelanjos.com/jones-benchmark.

CONOPUS-RBF is also compared with the alternative methods on 12 test
problems used in Regis [14]. These include G7, G8, G9, G10, four 30-D prob-
lems from the CEC 2010 benchmark [23] (C07, C08, C14 and C15) and four
design problems, namely, Welded Beam, GTCD (Gas Transmission Compressor
Design), Pressure Vessel, and Speed Reducer. The number of decision variables,
number of inequality constraints, the region defined by the bounds, and the best
known feasible objective values for these problems are given in Regis [14].

To evaluate the effectiveness of the RBF surrogate strategy, CONOPUS-RBF
is compared with CONPSO, which is a standard PSO for constrained problems
obtained by removing the trial solutions and RBF surrogates in CONOPUS-
RBF and also the local refinement phase. To assess the effectiveness of the local
refinement strategy, CONOPUS-RBF is also compared with an RBF-assisted ex-
tension of CONPSO without local refinement called CONPSO-RBF. Moreover,
it is compared with an RBF-assisted evolutionary algorithm called CEP-RBF
[14] and with Accelerated Particle Swarm Optimization (APSO)[18].

All computational runs are carried out in Matlab 8.2 on an Intel(R) Core(TM)
i7-4770 CPU 3.40 GHz 3.00 GHz desktop machine. Each method is run for 30
trials on all problems. The RBF-assisted methods are all initialized using an
affinely independent Latin Hypercube Design (LHD) with d + 1 points. The
initial population of particles is chosen as a subset of the LHD with the best
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objective function values. If there are not enough LHD points to form the initial
population, it is augmented by uniform random points over the search space.
The LHD is not needed by CONPSO and other non-surrogate methods. How-
ever, experiments on the test problems suggest that the performance of PSO
when initialized by uniform random points over the search space is similar to its
performance when initialized by an LHD. To ensure fair comparison, all methods
use the same LHD in a given trial, but different LHDs are used in different trials.

In the numerical experiments, the population size for CONOPUS-RBF, CON-
PSO-RBF and CONPSO is set to s = 5, 10, 20 (e.g., [7]). In some PSO imple-
mentations, the inertial weighting factor i(t) varies with the iterations from a
high value (close to 1) to a low value. Here, it is fixed at i(t) = 0.72984 and the
cognition and social parameters are set to µ = ν = 1.496172 as recommended
in [24]. The minimum and maximum values for the components of the veloc-
ity vectors are set to ∓ min

1≤i≤d
(ui − ℓi)/4, respectively. For CONOPUS-RBF, the

number of trial positions for each particle is r = 10d, the search radius for local
refinement is ∆ = 0.05 min

1≤i≤d
(ui − ℓi), and the distance requirement from previ-

ous sample points is ξ = 0.0005 min
1≤i≤d

(ui − ℓi). For CEP-RBF, the parameters

are µ = 5 parent solutions in each generation, and the number of trial offspring
for each parent in each generation is ν = min(1000d, 10000).

Parameter tuning can be used to obtain better algorithm performance when
the computational budget is limited [25]. However, for truly expensive func-
tions, this may not always be feasible and one can use parameter settings that
are reasonable based on previous algorithm performance. Besides, finding the
best parameter settings for CONOPUS-RBF is beyond the scope of this paper,
and our goal is not to show that it always outperforms other methods. Rather,
we wish to demonstrate that surrogates dramatically improve the performance
of PSO on constrained problems and that the resulting CONOPUS-RBF is a
promising approach when the number of simulations is limited.

4 Results and Discussion

CONOPUS-RBF is compared with alternatives on the 12 test problems using
data profiles [26]. To make it easier to present the results, two sets of comparisons
were performed: (1) CONOPUS-RBF vs CONPSO-RBF with different popula-
tion sizes (s = 5, 10, 20); and (2) CONOPUS-RBF vs other methods including
APSO, CONPSO, CONPSO-RBF and CEP-RBF.

Now the data profile of a solver s [26] is the function

ds(α) = |{p ∈ P : tp,s ≤ α(np + 1)}| /|P|, α > 0, (4)

where tp,s is the number of simulations required by solver s to satisfy the con-
vergence test defined below on problem p and np is the number of variables in
problem p. For a given solver s and any α > 0, ds(α) is the fraction of problems
“solved” by s within α(np + 1) simulations (equivalent to α simplex gradient

141 sciencesconf.org:bioma2018:181629



10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Data profiles up to 100 simplex gradients (constraint tolerance = 10−6)

Number of Simplex Gradients κ [Function Evaluations/(d+1)]

d
s
(κ)

 

CONOPUS−RBF (s = 5)
CONOPUS−RBF (s = 10)
CONOPUS−RBF (s = 20)
CONPSO (s = 5)
CONPSO (s = 10)
CONPSO (s = 20)

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Data profiles up to 100 simplex gradients (constraint tolerance = 10−6)

Number of Simplex Gradients κ [Function Evaluations/(d+1)]

d
s
(κ)

 

CONOPUS−RBF (s = 5)
CONPSO−RBF (s = 5)
CONPSO (s = 5)
APSO (s = 5)
(5+5)−CEP−RBF

Fig. 1: Data profiles for optimization methods on the test problems.

estimates [26]). Here, “solved” means the solver generated a point satisfying the
convergence test in Moré and Wild [26]. This test uses a tolerance τ > 0 and the
minimum feasible objective function value fL obtained by any of the solvers on a
particular problem within a given number of simulations µf and it checks if a fea-
sible point x obtained by a solver satisfies f(x(0))−f(x) ≥ (1− τ)(f(x(0))−fL),
where x(0) is the feasible starting point corresponding to the given problem.
Here, x is required to achieve a reduction that is 1 − τ times the best possible
reduction f(x(0)) − fL. In this study, τ = 0.05.

Figure 1 shows the data profiles of the various solvers on the test problems.
These profiles clearly show that CONOPUS-RBF is a dramatic improvement
over CONPSO for each of the population sizes s = 5, 10, 20. Moreover, for the
test problems considered and when the computational budget is limited, the best
results for CONOPUS-RBF and CONPSO are obtained when s = 5, followed
by s = 10 and then s = 20. A possible explanation for this is that with a smaller
population size, these algorithms are able to perform more iterations.

Next, Figure 1 shows that CONOPUS-RBF with s = 5 is slightly better than
(5+5)-CEP-RBF after about 40 simplex gradient estimates and it is much better
than both CONPSO and CONPSO-RBF with s = 5. In particular, after 100 sim-
plex gradient estimates, CONOPUS-RBF with s = 5 satisfied the convergence
test for about 85% of the problems compared to about 82% for (5+5)-CEP-RBF,
about 72% for CONPSO-RBF with s = 5, about 53% for CONPSO and 35%
for APSO. Additional comparisons between CONOPUS-RBF and CONPSO-
RBF for s = 5, 10, 20 (not shown here) indicate that local refinement improves
performance when the population size is small.

Friedman’s nonparametric statistical test followed by a multiple comparison
procedure was also performed to determine if the mean rank of CONOPUS-RBF
is significantly better than that of other algorithms when s = 5 at a fixed com-
putational budget of 15(d + 1) for the CEC 2010 problems and 30(d + 1) for the
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Fig. 2: Mean of the best feasible objective function value (over 10 trials) vs number of
simulations for various optimization methods on the MOPTA08 optimization problem.
Error bars represent 95% t-confidence intervals for the mean.

other test problems. The results show that CONOPUS-RBF is significantly bet-
ter than CONPSO and APSO on most of the test problems and it is significantly
better than CEP-RBF on three of the four CEC 2010 problems used.

Figure 2 shows the plot of the mean of the best objective function value (over
10 trials) obtained by each algorithm on the MOPTA08 problem as the number
of simulations increases. The error bars are 95% t confidence intervals for the
mean. This plot shows that on the MOPTA08 problem, CONOPUS-RBF with
s = 5 is better than (5 + 5)-CEP-RBF followed by CONPSO-RBF with s = 5
and these RBF-assisted methods are dramatically much better than CONPSO
and APSO with s = 5.

The advantage of CONOPUS-RBF over CEP-RBF may be partly due to the
local refinement procedure. Incorporating local refinement in CEP-RBF might
also improve its performance and the resulting algorithm might even outperform
CONOPUS-RBF. However, the results suggest that CONOPUS-RBF will still
be competitive with CEP-RBF with local refinement.

5 Summary and Future Work

This paper introduced the CONOPUS framework for a surrogate-assisted PSO
for computationally expensive constrained optimization. This method generates
a large number of trial positions for each particle in the swarm and uses surro-
gates for the objective and constraint functions to identify the most promising
trial position for each particle. The function evaluations are then carried out only
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on the promising trial positions. Moreover, at the end of each iteration, CONO-
PUS refines the current best position of all particles by finding an approximate
minimizer of the surrogate of the objective function within some neighborhood of
that best position and subject to surrogate inequality constraints with a small
margin and with a distance requirement from all previously visited positions.
CONOPUS was implemented using RBF surrogates and was shown to outper-
form the APSO algorithm and another constrained PSO with and without RBF
surrogates (CONPSO and CONPSO-RBF) for small population sizes of s = 5, 10
and 20 on the test problems. Moreover, CONOPUS-RBF with s = 5 is compet-
itive with a surrogate-assisted evolutionary algorithm CEP-RBF with the same
population size. In addition, CONOPUS-RBF with s = 5 outperforms all these
other alternatives on the large-scale MOPTA08 problem with 124 decision vari-
ables and 68 black-box inequality constraints. Overall, CONOPUS-RBF is a
promising algorithm for constrained expensive black-box optimization.

Future work will explore other ways to incorporate surrogates within the
PSO framework for constrained optimization and compare with other approaches
such as CEP-RBF with local refinement. Moreover, one can consider extensions
of the CONOPUS framework to multiobjective optimization and to problems
where there is noise in the objective and constraint functions. Finally, one can
also apply CONOPUS to other real-world optimization problems.
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Abstract. The crude oil preheating process in refineries is required to
be scheduled in a way to minimize the processing cost involved with it,
subject to the satisfaction of various process related constraints. The pro-
cess forms a mixed-integer optimization problem as the scheduling of the
processing units involves binary variables, while the discharges from the
running units are real valued. The two parts of such problems are usu-
ally handled by two different algorithms, where the optimum scheduling
obtained by one algorithm is fed to another algorithm for optimizing its
discharge process. In the present work, formulating the crude oil preheat-
ing process under the effect of linear fouling as a mixed-integer nonlinear
programming (MINLP) model, three binary-real coded evolutionary al-
gorithms (EAs) are investigated in order to demonstrate that a single
EA can successfully tackle its both binary and real parts. Further, the
statistical analysis of the performances of the EAs are also presented
through their application to a benchmark instance of the problem.

Keywords: evolutionary algorithms, optimization, crude oil preheating
process

1 Introduction

Evolutionary algorithms (EAs) are known to have the ability to find approximate
solutions in reasonable time for such problems also, where classical optimization
methods either become too expensive or even ineffective. EAs are usually inde-
pendent of problem domains unlike classical optimization methods, which are
restricted to specific classes of problems only. Hence, EAs have found applica-
tions in a wide range of real-life problems, including linear and nonlinear, convex
and non-convex, continuous and discrete, and many more.

However, EAs still could not be generalized in case of many classes of dis-
crete or mixed-discrete problems, but require the incorporation of some problem
information for their effective performance. Unit scheduling of continuous flow
process systems in industries is such a problem, which consists of two opti-
mization sub-problems. The first part is the integer-valued scheduling of the
processing units, while the second part is concerned with the optimization of the
discharge process based on the scheduling of the first part. Accordingly, the op-
timization of an industrial continuous flow process system essentially becomes a
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mixed-integer non-linear programming (MINLP) problem involving both integer
variables to represent operational status of the units and real variables to repre-
sent the flows from the running units. Due to the complexities involved with such
MINLP problems, two parts of a problem are often tackled separately through
two different algorithms, where the first algorithm is employed to schedule the
processing units over a time horizon and then the second algorithm optimizes
the flow processes in the schedule of the first algorithm [1, 2]. However, such an
isolating system may suffer from the drawback of missing better solutions as the
possibility of more promising solutions cannot be denied if both the parts of the
problem were tackled interactively [3, 4].

In view of above, three EAs are investigated here for handling an MINLP
based two-step continuous flow process system by a single EA. The studied
problem is the optimum scheduling of the crude oil preheating process arising
in refineries, which is carried out through a crude preheat train (CPT) over a
time horizon. The aim of preheating is to increase the crude oil temperature
to a certain degree before its entry into a furnace, so that the energy (fuel)
requirement in the furnace gets reduced. The CPT consists of a network of heat
exchangers, commonly known as the heat exchanger network (HEN), to run a
productive heat treatment process. The heat exchangers of HEN require periodic
shutting down for the purpose of cleaning or other maintenance. This demands
the effective scheduling of the HEN in order to get the optimum performance
from the active units.

2 Literature review

In the case of EAs, mixed-integer problems involving distinct real and integer
valued parts are often solved by hybridizing two optimization techniques, al-
lowing one technique to handle the integer part and another to handle the real
part. As an example, Trivedi et al. [5] solved the mixed-integer unit commitment
problem, where binary variables are evolved using a genetic algorithm (GA) and
the continuous variables using a differential evolution (DE). Similar hybridiza-
tion procedures are found in many other works, such as hybridization of GA
and particle swarm optimization (PSO) [6, 7], artificial bee colony (ABC) and
GA [8], and DE and PSO [9].

Some works are also found where both integer and real parts of mixed-integer
problems are handled by a single algorithm [3, 4]. However, no such work on
scheduling the crude oil preheating process in refineries could be found in spe-
cialized literature.

3 Problem description and formulation

The studied problem of crude oil preheating process in a CPT is adopted from
Smaili et al. [10], which is shown schematically in Fig. 1. In this problem, the
raw crude oil passes through 14 heat exchangers (marked in Fig. 1 by 1 to 14),
where it is preheated by 7 heating streams (marked in Fig. 1 by H1 to H7)
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Fig. 1. Crude oil preheating process in a CPT [10].

prior to entering into the furnace. Heat exchangers 1–8 are connected in series;
while the remaining 6 heat exchangers are arranged in two parallel lines, one
containing heat exchangers 9–11 and the other connecting heat exchangers 12–
14. The desalter and flash used in the processing line remove, respectively, any
salt and vapour dissolved in the crude oil. The preheated crude oil is then burnt
in the furnace at a higher temperature, after which it is distilled into different
products.

During the preheating process of the crude oil, some impurities mixed with
the crude oil get precipitated/deposited on the inner surfaces of the heat ex-
changers, which is called fouling. Such deposition forms a thick layer over time,
which gradually reduces the performance of heat exchangers. In other words, the
crude oil cannot be heated up to the possible level, which consequently increases
the energy requirement in the furnace, thus increasing the energy cost. Further,
the periodic cleaning of the heat exchangers for mitigating fouling is associated
with cleaning cost. Hence, the process needs optimization for minimizing the
total operational cost (i.e., the total of energy cost and cleaning cost) subject to
some processing constraints.

Since the process is operated continuously over several years without any
interruption, it can be considered that a cycle of a shorter time period is repeated
in the entire time horizon. For the purpose of analysis, the cycle can further
be divided equally into a certain number of time instants. At a time instant,
a unit (heat exchanger) will remain either in full operation or partially/fully
shutdown. In a shutting down instant, a unit may go through cleaning process
also. Accordingly, the general optimization problem of a cycle of the process can
be defined as follows:

– Determine
1. Operational status of each unit at every time instant.
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2. Outlet temperature of the crude from the CPT at every time instant.
– To minimize total cost (cleaning cost plus energy cost).
– Subject to

1. Limit on operational units in each series segment at every instant.
2. Limit on operational units in each parallel segment at every instant.
3. Limit on operational units in each heating line at every instant.
4. Limit on crude oil temperature from the outlet of the CPT.
5. Limit on cleaning instants of each unit in the entire time horizon.
6. Limit on cleaning a unit at consecutive time instants.

The above optimization problem is formulated in Eqs. (1) and (2).

Minimize f = Ccl
N∑

i=1

T∑

t=1

βit + CenerF f
Ncf

N

T∑

t=1

(
Θfmax − Θf,out

Nt

)
(1)

Subject to g1 ≡
nsui∑

j=1

usuij ,t > suon
i ; t = 1, 2, · · · , T ; i = 1, 2, · · · , ns

(2a)

g2 ≡
npsuij∑

k=1

upsuijk,t > psuon
ij ; t = 1, 2, · · · , T ; j = 1, 2, · · · , npsi

i = 1, 2, · · · , npl (2b)

g3 ≡
nhlui∑

j=1

uhluij ,t > hluon
i ; t = 1, 2, · · · , T ; i = 1, 2, · · · , nhl

(2c)

g4 ≡Θffinal
t 6 Θfmax ; t = 1, 2, · · · , T (2d)

g5 ≡
T∑

t=1

vit > 1 ; i = 1, 2, · · · , N (2e)

g6 ≡ (1 − uip) (1 − uit) 6= 0 ; p =

{
T ; if t = 1

t − 1 ; otherwise.

t = 1, 2, · · · , T ; i = 1, 2, · · · , N
(2f)

The objective function, f , in Eq. (1) represents the total operational cost,
where the two summing terms on the right side represent the cleaning cost and
energy cost, respectively. The constraints, g1–g3, in Eqs. (2a)–(2c) represent,
respectively, the minimum number of operational units in series segments, par-
allel segments, and heating medium flow lines; while the constraints, g4–g6, in
Eqs. (2d)–(2f) ensure the specified temperature of the crude oil at the outlet
of the CPT, cleaning of each unit at least once in the entire time horizon, and
avoiding the cleaning of a unit at two consecutive time instants, respectively.
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In Eqs. (1) and (2), N and T are respectively the total number of units (heat
exchangers) and time instants in a production cycle, Ccl is the cleaning cost co-
efficient per cleaning instant for the ith unit at the tth time instant (in practice,
Ccl may remain same in all units and time instants), Cener is the energy cost co-
efficient per unit of energy requirement, F f

N is the flow rate in the last unit (Nth
unit), cf

N is the specific heat transfer capacity of the crude oil in the last unit,

Θf,out
Nt is the crude outlet temperature from the last unit at the tth time instant,

Θfmax is the temperature up to which the crude is to be heated in the furnace,
ns is the number of series segments, nsui is the number of units in the ith series
segment with suij as its jth unit and suon

i as the required minimum number of
operational units, npl is the number of parallel segments, npsi is the number of
branches in the ith parallel segment with npsuij as the number of units in its jth
branch and psuijk as the kth unit while psuon

ij as the required minimum number
of operational units in that branch, nhl is the number of heating lines with nhlui

as the number of units in the ith heating line and hluij as the jth unit and hluon
i

as the required minimum number of operational units in that heating line.
The cleaning time (βit), operational status (uit) and cleaning status (vit) of

the units, as used in Eqs. (1) and (2), are expressed by Eq. (3), where vit = 1
means that the ith unit will be cleaned at the tth time instant.

uit =





1 ; if the ith unit is fully in operation

0 ; if the ith unit is shutdown partially

t = 1, 2, · · · , T ; i = 1, 2, · · · , N .

(3a)

vit =





0 ; if uit = 1

{0, 1} ; otherwise

t = 1, 2, · · · , T ; i = 1, 2, · · · , N .

(3b)

βit =





0 ; if vit = 0

∈ [0, αit] ; otherwise

t = 1, 2, · · · , T ; i = 1, 2, · · · , N .

(3c)

For obtaining the crude oil outlet temperatures from the last unit at different
time instants, Θf,out

Nt used in Eq. (1) and (2d), the same for different units are
computed using Eq. (4a), where t = 1, 2, · · · , T and i = 1, 2, · · · , N .

Θf,out
it =





Θf,in
it ; if uit = 0

φh
itΘ

hinit
i (1 − αit) + {αit + (1 − αit)φ

c
it} Θf,in

it ; otherwise.

(4a)

where, Θf,in
it =





Θf,inlet ; if i = 1

Θf,out
i−1,t ; i ∈ {2 − 14 ; i 6= 6, 12}

Θf,out
5,t − Θdesalter ; if i = 6

Θf,out
8,t ; if i = 12

(4b)

150 sciencesconf.org:bioma2018:182299



φh
it =

(1 − x)Cmin

(1 − xRi)cf
i

(4c)

φc
it =

(1 − xRi)c
f
i − (1 − x)Cmin

(1 − xRi)cf
(4d)

Cmin = min{F f
i cf

i, F
h
i ch

i } (4e)

x = exp

{
−hitAi

Cmin
(1 − Ri)

}
(4f)

Ri =
Cmin

Cmax
(4g)

αit =





0 ; if uit = 1

∈ (0, 1) ; otherwise

t = 1, 2, · · · , T ; i = 1, 2, · · · , N .

(4h)

In Eq. (4), Θf,out
it is the crude outlet temperature from ith unit at tth time

instant, Θf,in
it is the crude oil inlet temperature of ith unit at tth time instant,

Θhinit
i is the initial temperature of heating medium of ith unit, αit is the partial

shutdown time during operation, Θf,inlet is the crude oil temperature at the inlet
of the CPT, Θdesalter is the temperature drop in desalter, Cmin is the minimum
heat capacity rate, Cmax is the maximum heat capacity rate, F f

i is the flow rate
of crude oil of ith unit, cf

i is the specific heat capacity of crude oil of ith unit,
F h

i is the flow rate of heating medium of ith unit, ch
i is the specific heat capacity

of heating medium of ith unit, hit is the heat transfer co-efficient of ith unit at
tth time instant and Ai is the area of ith unit.

The heat transfer co-coefficients for cleaning/shutdown sub-period (hcl
it) and

processing sub-period (hpr
it ) can be obtained from the linear fouling rates (Ṙf

t),
which are expressed by Eq. (5).

Ṙf,pr
it = Ṙf,cl

it = Ṙf
t (5a)

hcl
it =

hpr
i,t−1

1 + {hpr
i,t−1Ṙ

f,pr
i,t−1(1 − αit)∆t}

(5b)

hpr
it =

hcl
it

1 + (hcl
itṘ

f,cl
i,t−1βit∆t)

+ (vith
clean
it ) (5c)

(5d)

In Eq. (5), Ṙf,pr
it is the fouling resistance under processing sub-period, Ṙf,cl

it is
the fouling resistance under cleaning sub-period and ∆t is the duration of each
time interval.

4 Evolutionary algorithms (EAs) for solving the problem

The optimization problem studied in the present work seeks the scheduling of
the crude oil preheating process in a CPT of N heat exchangers over T time in-
stants, so as to minimize the total cost arising from the requirement of external
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energy for additional heating of the crude oil and periodic cleaning of the heat
exchangers. The scheduling of the heat exchangers needs 2NT number of {0,1}
binary variables (uit and vit; i = 1, . . . , N and t = 1, . . . , T ), while the crude
preheating process requires NT number of real variables (αit; i = 1, . . . , N and
t = 1, . . . , T ). For solving the problem, three mixed-binary EAs are investigated
here, which are genetic algorithm (GA), differential evolution (DE) and particle
swarm optimization (PSO). In all the three EAs, an individual (solution repre-
sentation) for the problem at hand consists of two one-dimensional arrays, the
first one of size 2NT takes the {0,1} binary variables and the second one of size
NT takes the real variables.

The investigated binary-real coded GA (brGA) is the one applied by Datta [3]
to a problem of similar nature, namely the unit commitment problem arising
in the area of power systems, which involves the scheduling of given power
generating units and optimization of discharge from the operational units in
a way to meet the hourly power demand at a minimum production cost sub-
ject to a series of system related fixed and dynamic constraints. In the brGA,
the standard binary tournament selection operator, single-point crossover oper-
ator and swapping mutation operators are used for handling the {0,1} valued
binary variables; while the binary tournament selection operator, simulated bi-
nary crossover (SBX) operator [11] and polynomial mutation operator [11] are
used for handling the real variables of a problem.

Datta and Figueira [12] proposed a real-integer-discrete coded differential
evolution (ridDE) algorithm for working with any type of variables (real, binary,
integer, or discrete) without any conversion, which was also applied successfully
to the unit commitment problem by Datta and Dutta [2]. The ridDE replaces
the real valued mutation operator of the ‘DE/rand/1/bin’ variant of DE [13] by
a binary valued mutation operator, which generates only {0,1} valued binary
mutant elements with a mutation probability based on some basic properties of
DE and such binary numbers. The ridDE is investigated here as another EA for
solving the problem at hand.

Similar to the ridDE [12], Datta and Figueira [14] proposed a real-integer-
discrete coded particle swarm optimization (ridPSO) algorithm for working with
any type of variables (real, binary, integer, or discrete) without any conversion,
whose application was demonstrated on various engineering design problems.
The ridPSO defines particle vectors by {0,1} valued binary elements with a
mutation probability, based on some basic properties of PSO and such binary
numbers. The ridPSO is investigated here as the third EA for solving the crude
oil preheating problem.

Since all the three EAs are stochastic in nature, there is no guarantee that
the new individuals formed in a generation (iteration) will be better than those
of the current individuals from where they were generated. Hence, in order to
prevent the search from moving opposite to the optimum in worst cases, the
elite individuals at every generation are preserved using the mechanism proposed
by Deb et al. [15]. In this case, instead of forming the population for the next
generation directly with the newly generated individuals, they are first combined
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with the existing individuals of the current population. Then the best 50% of
them, based on their objective values, are taken as the population for the next
generation.

5 Numerical experimentation

The EAs stated in Section 4 are coded in the C programming language by in-
corporating the optimization problem formulated in Eqs. (1) and (2). Then the
performances of the EAs are evaluated with the help of a case study.

5.1 Case study

The investigated case study of crude oil preheating is taken from Smaili et al.[10].
As shown in Fig. 1, the CPT in the case study consists of 14 number of shell and
tube heat exchangers (N = 14) of the type of counter-current flow. The heat
exchanger network (HEN) starts with two series segments (ns = 2); the first
one contains units (heat exchangers) 1–5, followed by a desalter, and then the
second series segment containing units 6–8. Fixing a flash after the second series
segment, the remaining six units are then arranged in a parallel segment (npl =
1) having two branches; the first one contains units 9–11 and the second one
contains units 12–14. At the end of the HEN, a furnace is placed for further
heating of the crude oil, if required.

There are seven heating lines (nhl = 7) in the HEN, which are marked in
Fig. 1 as H1–H7. The units (heat exchangers) covered by the heating lines are
as follows — H1: (1, 9, 12), H2: (8, 10, 13), H3: (6, 11, 14), H4: (3, 7), H5: (2),
H6: (4) and H7: (5).

The case study is subjected to some operational constraints in the form of
minimum number of units to be made always fully operational. Each of the two
series segments and the two branches of the parallel segment requires minimum
of two of its units to be made fully operational. Some heating lines also have
similar requirement, which are as follows — H1: 2, H2: 2, H3: 2 and H4: 1.

For solving the problem, a repeating production cycle of 3 years is considered,
which is divided into 36 time instants (T = 36), i.e., each time instant is of a
duration of one month. Except the cost coefficients, the problem related other
input parameters are taken from Smaili et al. [10] and given in Table 1 in terms of
the notations used in the problem formulation in Eqs. (1)–(5). The cleaning cost
coefficient (Ccl) and energy cost coefficient (Cener) are taken from Tian et al. [16],
which are 20000 $ per cleaning instant and 15.5 $ per MWh, respectively. Further,
the initial temperature of the crude oil at any time instant is considered to be
26 oC (Θfinit

t = 26 oC), requiring it to be preheated up to 250 oC (Θfmax = 250 oC)
with a drop of 10 oC in the desalter (Θdesalter = 10 oC).

5.2 Experimental setup

The considered EA related parameter values are given in Table 2, where a non-
applicable value is marked by (–). Since the performance of a stochastic optimizer
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Table 1. Design and fouling data for the case study (source: Smaili et al. [10])

Unit
Θhinit

i Fh
i F f

i chi cfi hclean
it Ai Ṙf

t × 10−7

(oC) (kg/s) (kg/s) (kJ/kgK) (kJ/kgK) (W/m2K) (m2) (m2K/J)
HE-1 194 19.1 95 2.8 1.92 0.5 56.6 0.6
HE-2 296 3.3 95 2.9 1.92 0.5 8.9 0.9
HE-3 197 55.8 95 2.6 1.92 0.5 208.3 0.6
HE-4 170 49.7 95 2.6 1.92 0.5 112.9 0.8
HE-5 237 49.7 95 2.6 1.92 0.5 121.6 0.8
HE-6 285 34.8 95 2.8 2.3 0.5 110.1 1.5
HE-7 205 55.8 95 2.6 2.3 0.5 67.2 1.1
HE-8 254 45.5 95 2.9 2.3 0.5 67.1 1.5
HE-9 249 9.5 46 2.8 2.4 0.5 91.0 1.6
HE-10 286 22.8 46 2.9 2.4 0.5 61.3 1.8
HE-11 334 17.4 46 2.8 2.4 0.5 55.6 1.9
HE-12 249 9.5 46 2.8 2.4 0.5 91.0 1.6
HE-13 286 22.8 46 2.9 2.4 0.5 61.3 1.8
HE-14 334 17.4 46 2.8 2.4 0.5 55.6 1.9

Table 2. User-defined parameter values for the investigated EAs.

Parameter brGA ridDE ridPSO
Population size 100 100 100
Maximum number of generations performed 7000 7000 7000
Crossover probability 90% (0,90%] –
Distribution index for SBX operator 20 – –
Mutation probability (0,1%] – –
Distribution index for polynomial mutation operator 35 – –
Mutation probability (for binary variables only) – (0,15%] (0,15%]
Scaling factor (for real variables only) – (0,70%] –
Inertia constant (for real variables only) – – (0,0.75]
Cognitive factor (for real variables only) – – (0,1.5]
Social factor (for real variables only) – – (0,2]
Number of runs 30 30 30

is likely to be influenced by the user-defined algorithmic parameter setting, in-
stead of fixed values, some parameter values in Table 2 are made self-adaptive
within given ranges with an attempt to reduce their influences on the perfor-
mance of an EA. In this process, every time a random value for such a parameter
is generated within its given range. Further, in order to analyze the statistical
performance, 30 number of independent runs of each EA are performed with
different sets of initial individuals (solutions).

5.3 Results and discussion

With the above problem and algorithm related input information, each of the
EAs are executed for 30 independent runs. For the purpose of illustration, the
best schedule obtained by the brGA is given in Table 3, where ‘1’ in the schedule
means that the particular unit (heat exchanger) is in fully operation at the
corresponding time instant, while ‘0’ means it was partially shutdown during
which period the unit may go through cleaning also. The schedule shows that no
two units are cleaned at two consecutive time instants and each unit is cleaned
at least once in the entire production cycle.

The overall costs, i.e., the values of the objective function expressed by
Eq. (1), obtained from 30 runs of each of the EAs are visualized in Fig. 2(a),
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Table 3. The best schedule of the case study obtained by the brGA.

Time
Schedule

Number of Time
Schedule

Number of
instant operating units instant operating units

1 01111101111111 12 19 11111110111111 13
2 11111111111110 13 20 11111111111011 13
3 11111111111101 13 21 11110111011111 12
4 11101111011111 12 22 11111110110111 12
5 01111111110111 12 23 11111101111111 13
6 11111111111111 14 24 11111111111111 14
7 11011111101111 12 25 11111011011111 12
8 11111111101111 13 26 11111111111111 14
9 11110111011111 12 27 11111111011111 13
10 11111111101111 13 28 11111111111111 14
11 11111110011111 12 29 11111111111110 13
12 11111011101111 12 30 11110111111111 13
13 11011111101111 12 31 11111111101011 12
14 11101111111011 12 32 11101111111111 13
15 11111110111111 13 33 11111111110111 13
16 11111111101111 13 34 11111111111111 14
17 11111111111101 13 35 11111111111111 14
18 11110111101111 12 36 10111111101111 12
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Fig. 2. Total cost over 30 runs and crude outlet temperatures over different time in-
stants of a random run.

where it is observed that the lowest cost could be obtained by the brGA among
the three EAs. Further, the obtained crude oil outlet temperatures from the
heat exchanger network at different time instants of a random run are shown
in Fig. 2(b), where the outlet temperatures obtained from the brGA are found
to be almost close to the required maximum furnace temperature, while those
obtained from the ridPSO are found to be the worst ones.

For further detail of the performances of the EAs, a statistical analysis of the
overall costs (best, worst, mean, and standard deviation) over 30 independent
runs of the EAs is performed and the obtained results are presented in Table 4.
It is seen in Table 4 that the brGA has better objective values (best, worst as
well as mean), followed by those of the ridDE. However, the ridDE has better
standard deviation than those of the brGA and ridPSO. Therefore, finally the
EAs are statistically compared by conducting pair-wise t-test between the mean
objective value and standard deviation at a significance level of 5%. The obtained
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Table 4. Statistical analysis of the overall cost over 30 independent runs of the EAs.

EA
Overall cost (in $)

Best Worst Mean Standard deviation

brGA 477150 582772 526507 31555
ridDE 534629 662064 576553 26633
ridPSO 733464 912245 815510 46860

t values are given in Table 5, by marking a value with a ‘-ve’ sign if the second
EA in a pair is not better than the first one. Accordingly, it can be concluded

Table 5. The t-test values for the solutions of the EAs at a significance level of 5%.

EA brGA-vs-ridDE brGA-vs-ridPSO ridDE-vs-ridPSO

t-value -6.64 -28.02 -24.28

that the brGA outperforms the ridDE and ridPSO, and the ridDE outperforms
the ridPSO.

6 Conclusion

A typical crude oil preheating process arising in refineries is formulated as a
constrained mixed-integer nonlinear programming (MINLP) problem for mini-
mizing total of the cost of additional energy requirement and the cost for cleaning
the heat exchangers of the process. It involves two separate optimization sub-
problems, the integer valued scheduling of the heat exchangers and the real val-
ued heating levels in the operational heat exchangers. Such problems are usually
handled by two separate algorithms, one for the integer part and another for the
real part. The potentiality of thee mixed-binary evolutionary algorithms (EAs),
namely genetic algorithm (GA), differential evolution (DE) and particle swarm
optimization (PSO), are investigated here for handling both the parts of the
problem by a single EA. From statistical analysis of the results for a benchmark
problem, the GA is found outperforming both the DE and PSO, followed by the
DE outperforming the PSO.
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Abstract. In this study, RC beams under flexural effects are optimized
by using new generation metaheuristic algorithms. The selected algo-
rithms are Flower pollination algorithm (FPA), Teaching learning based
optimization (TLBO) and Jaya algorithm (JA), which are quite new
ones. The methodologies employing these algorithms are used in the nu-
merical examples for different runs in order to evaluate the robustness
of the algorithms. All algorithms are effective on the problem, but new
methods may be developed to improve the robustness of the optimiza-
tion.

Keywords: RC beams, Optimization, Flower pollination algorithm (FPA),
Teaching learning based optimization (TLBO), Jaya algorithm (JA)

1 Introduction

The cost optimization of reinforced concrete (RC) structural members is one
of the major objectives of civil engineers and it is a challenging design since
concrete and reinforcement steel has different behavior in stress and prices. In
that case, the best design ensuring the security measures with the minimum
cost can be only found by trying different sizes of members. By using heuristic
approaches, the amount of the trials is enhanced. Thus, global optimum results
can be found. The optimum design of RC beams have been investigated by
using metaheuristic based methods [1, 2], but these studies generally present a
proposed without robustness evaluation. In this study, the algorithms such as
Flower pollination algorithm (FPA) [3], Teaching learning based optimization
(TLBO) [4], Jaya algorithm (JA) [5] are investigated for the robustness and
efficiency.

2 The optimization problem

The design variables are breadth (bw), height (h), number of reinforcements in
different sections (n1, n2, n3 and n4) and size of the reinforcement (φ1, φ2, φ3

and φ4) as seen in Fig. 1. The objective is to minimize the total material cost by
considering constraints according to American Concrete Institute (ACI318) [6].
The design constants defined as the clear cover of the reinforcement (35 mm),
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Fig. 1. The optimization problem with design variables

the maximum size of the aggregate diameter (16 mm), the specified compressive
strength of concrete (20 MPa), the specified yield strength of reinforcement (420
MPa), the diameter of stirrup (10 mm), the cost of the concrete (40 $/m3) and
reinforcement bars (400 $/t). The discrete optimization was done for the ranges;
10-30 mm, 250-350 mm and 350-500 mm for diameters of the main reinforcement
bars, breadth and height, respectively.

3 Discussion and Conclusion

The robustness evaluation and optimum results are presented in Table 1 for
different moment capacities. According to the results, the best one is JA. It must
be noted that all algorithms shows different performances for different flexural
moment goals and it validates the no free-lunch theorem. The best solutions
can be found if the results of the 20 runs are checked, but minor local optima
problem is observed for the algorithms since the standard deviation values are not
so small. The new generation algorithms are feasible for the problem, but hybrid
and new methods are needed to improve the robustness of the optimization. In
the future studies, the hybrid of these algorithms can be considered and additonal
robustness measures can be investigated.
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Table 1. The optimum results

JA
Moment (kNm) 50 100 150 200 250 300 350 400 450 500

h (mm) 350 400 500 500 500 500 500 500 500 500
bw (mm) 250 250 250 250 250 300 300 350 350 400
φ1 (mm) 14 16 16 28 26 22 26 26 28 26
φ3 (mm) 20 28 30 22 14 12 16 12 16 12

n1 2 3 4 2 3 5 4 5 5 6
n3 0 0 0 0 2 2 3 6 5 9

φ3 (mm) 12 10 12 10 12 14 12 10 10 12
φ4 (mm) 18 16 14 16 18 22 18 26 14 30

n2 2 4 2 3 2 2 4 3 2 4
n4 0 0 0 0 0 0 0 0 0 0

Mu (kNm) 57.31 111.22 167.71 222.42 279.29 333.48 388.94 445.15 500.11 555.96
Best Cost ($/m) 5.16 6.85 8.20 9.55 11.60 13.56 15.87 18.08 20.16 22.45
Num. of analyses 225 100 75 100 125 200 1475 950 175 2100
Ave. Cost ($/m) 5.17 6.86 8.25 9.59 11.65 13.70 16.05 18.62 20.58 22.93
Standard Dev. 0.01 0.02 0.07 0.07 0.06 0.12 0.19 0.43 0.28 0.21

TLBO
Moment (kNm) 50 100 150 200 250 300 350 400 450 500

h (mm) 350 400 500 500 500 500 500 500 500 500
bw (mm) 250 250 250 250 250 250 300 300 350 400
φ1 (mm) 14 16 16 28 26 28 26 28 28 26
φ3 (mm) 30 30 16 20 14 14 14 16 16 12

n1 2 3 4 2 3 3 4 4 5 6
n3 0 0 0 0 2 4 4 5 5 9

φ3 (mm) 12 10 12 10 12 12 14 12 12 12
φ4 (mm) 28 14 16 10 18 18 18 12 16 20

n2 2 4 2 3 2 3 3 4 2 4
n4 0 0 0 0 0 0 0 0 0 0

Mu (kNm) 57.31 111.22 167.71 222.42 279.29 333.50 390.51 445.40 506.81 555.96
Best Cost ($/m) 5.16 6.85 8.20 9.55 11.60 13.70 15.94 18.17 20.38 22.45
Num. of analyses 925 50 475 625 1125 100 1125 925 350 900
Ave. Cost ($/m) 5.16 6.85 8.23 9.56 11.71 13.87 16.15 18.43 20.68 22.97
Standard Dev. 0.01 0.01 0.04 0.01 0.06 0.10 0.12 0.19 0.26 0.22

FPA
Moment (kNm) 50 100 150 200 250 300 350 400 450 500

h (mm) 350 400 500 500 500 500 500 500 500 500
bw (mm) 250 250 250 250 250 300 300 450 400 450
φ1 (mm) 14 16 16 28 26 22 26 20 24 26
φ3 (mm) 24 18 28 16 14 10 20 22 14 14

n1 2 3 4 2 3 5 4 8 6 6
n3 0 0 0 0 2 3 2 0 5 5

φ2 (mm) 12 10 12 10 12 14 12 12 10 10
φ4 (mm) 20 18 26 18 14 30 24 28 22 24

n2 2 4 2 3 2 2 4 4 7 6
n4 0 0 0 0 0 0 0 0 0 0

Mu (kNm) 57.31 111.22 167.71 222.42 279.29 334.02 389.55 445.09 500.11 557.23
Best Cost ($/m) 5.16 6.85 8.20 9.55 11.60 13.59 15.95 18.21 20.52 22.74
Num. of analyses 675 1225 1950 1450 450 1575 1400 1150 2025 2225
Ave. Cost ($/m) 5.30 6.87 8.25 9.56 11.78 13.95 16.30 18.60 20.84 23.07
Standard Dev. 0.13 0.02 0.05 0.01 0.11 0.15 0.19 0.22 0.23 0.21
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2 Jožef Stefan Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
tome.eftimov@ijs.si

3 Faculty of Mathematics, Natural Sciences and Information Technologies,
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Abstract. To find the strengths and weaknesses of a new multi-objective
optimization algorithm, we need to compare its performance with the
performances of the state-of-the-art algorithms. Such a comparison in-
volves a selection of a performance metric, a set of benchmark problems,
and a statistical test to ensure that the results are statistical signifi-
cant. There are also studies in which instead of using one performance
metric, a comparison is made using a set of performance metrics. All
these studies assume that all involved performance metrics are equal. In
this paper, we introduce a data-driven preference-based approach that
is a combination of multiple criteria decision analysis with deep statis-
tical rankings. The approach ranks the algorithms for each benchmark
problem using the preference (the influence) of each performance metric
that is estimated using its entropy. Experimental results show that this
approach achieved similar rankings to a previously proposed method,
which is based on the idea of the majority vote, where all performance
metrics are assumed equal. However, as it will be shown, this approach
can give different rankings because it is based not only on the idea of
counting wins, but also includes information about the influence of each
performance metric.

Keywords: Multiple criteria decision analysis, multi-objective optimiza-
tion, quality indicators, deep statistical ranking, statistical comparison,
data-driven

1 Introduction

When working on a new optimization algorithm, a crucial task is to compare its
performance with state-of-the-art algorithms [4]. In single-objective optimiza-
tion, the performance of algorithms is analyzed using the best algorithmic solu-
tion. For example, in the case of minimization problems, the solution with the
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lowest value is the best. However, in multi-objective optimization algorithms
(MOAs), it is not clear what the quality of a solution means in the presence of
several optimization criteria. This is because the result is an approximation of
the Pareto-optimal front, called an approximation set, which can be analyzed
according to different quality aspects related to properties of convergence and
diversity e.g., the closeness to the optimal front, coverage of a wide range of di-
verse solutions [3]. Quality indicators can be used to evaluate the performance of
MOAs. Each quality indicator maps an approximation set to a real number [13].
In comparative studies, algorithms are used to solve a number of benchmark
problems followed by the application of quality indicators to assess their per-
formance [4]. Meta-heuristics are non-deterministic techniques, meaning there is
no guarantee that the result will be the same for every run. To test the quality
of an algorithm, it is not enough to perform just one run, but many runs of
the algorithm on the same problem are needed, from which conclusions can be
drawn. Additionally, this data must be analyzed with some statistical tests to
ensure that the results are significant.

The aim of this study is to compare the performance of MOAs using a data-
driven preference-based approach with a set of quality indicators. In Section 2, an
overview of the related works is presented. Section 3 introduces the data-driven
preference-based methodology. In Section 4 the experimental study is presented,
while Section 5 gives a discussion of the proposed methodology. The conclusions
of the paper are presented in Section 6.

2 Related work

Many studies that address the problem of how to compare approximation sets
in a quantitative manner have been conducted. Riquelme et al. [13] presented a
study of a large number of metrics for comparing the performance of different
multi-objective optimization algorithms, and presented a review and an analysis
of 54 multi-objective optimization metrics and a discussion about the advan-
tages/disadvantages of the most citied metrics in order to give researchers suffi-
cient information for choosing them. A lot of the presented metrics use quality
indicators to evaluate the quality of the solutions. Additionally, after calculating
the quality indicator of interest, the data must be analyzed using a statistical test
to ensure that the results are significant [8, 9]. In [7], Eftimov et al. presented a
study on how to compare the performance of MOAs using quality indicators and
a Deep Statistical Comparison (DSC) approach. They used the DSC approach
because it gives more robust statistical results to compare MOAs regarding the
data obtained for a single quality indicator. However, there are also studies that
use more than one quality indicator to evaluate the performance of MOAs. In
[15], Yen and He presented a double-elimination tournament using a quality in-
dicator ensemble to rank MOAs. The tournament contains approximation sets
obtained from MOAs for the same initial population and involves a series of
binary tournament selections and in each one a quality indicator from an en-
semble is randomly chosen for comparison. The result of the tournament is one
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winning approximation set, so the corresponding MOA is ranked one. Then the
approximations sets that are generated by the winning MOA are removed and
the remaining approximation sets will go through another double elimination
tournament to identify the second best algorithm and so on. The results of the
evaluation show that the method is performing more or less as a majority vote.
The same idea was used by Ravber et al. [12], where instead of double elim-
ination tournament, they used the chess rating system based on the Glicko-2
system [10]. The comparison between two approximation sets was made by a
randomly selected quality indicator from the ensemble. In both approaches, the
selection of the quality indicator that is used for a binary tournament is ran-
dom and comes from a uniform distribution, such that all quality indicators in
the ensemble are equal. Eftimov et al., also presented a comparative study of
MOAs using an ensemble of quality indicators together with DSC [6]. This study
used two ensemble combiners to rank and compare MOAs. Using one of them,
each algorithm obtains a ranking for each problem, which is the average of its
DSC rankings for each quality indicator for that problem. The other proposed
ensemble is a hierarchical majority vote, which is a recursive approach where
each algorithm is checked for the number of wins. In both scenarios, there is
no preference between the quality indicators used in the comparison and all are
assumed equal.

2.1 The Deep Statistical Ranking

Deep Statistical Comparison (DSC ) is a recently proposed approach for making
a statistical comparison of meta-heuristic stochastic optimization algorithms on
a set of single-objective problems [8]. Its main contribution is its ranking scheme,
which is based on the whole distribution instead of using just one statistic to
describe the distribution, such as either the average or the median. A study on
how to compare the performance of MOAs using quality indicators and DSC can
be found in [6, 7], where DSC gave more robust results compared to a standard
statistical test recommended for making a statistical comparison.

2.2 The PROMETHEE

PROMETHEE methods are used in decision making to solve a decision problem
in which a set of alternatives are evaluated according to a set of criteria that are
often conflicting. Without loss of generality, we can assume that these criteria
have to be minimized. For the method, an evaluation matrix is constructed,
in which each alternative is estimated for each criteria. The method performs
pairwise comparisons between all the alternatives for each criteria to provide
either a complete or partial rankings of the alternatives. Four PROMETHEE
methods exist, named as I, II, III, and IV. They can be used depending on the
nature of the data that is involved in the comparison and the type of ranking
that is preferred.
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3 The proposed methodology

The proposed methodology consists of two steps. In the first, the DSC rank-
ing scheme is used to obtain robust statistics regarding each quality indicator
separately, which are combined in the second step using the PROMETHEE II
method [2].

3.1 The PROMETHEE II

Let us assume that a comparison needs to be made between m algorithms (i.e.,
alternatives) regarding n quality indicators (i.e., criteria) for a single problem.
Let A = {A1, A2, . . . , Am} be the set of algorithms we want to compare regarding
the set of quality indicators Q = {q1, q2, . . . , qn}. The decision matrix is a m×n
matrix (see Table 1) that contains the DSC rankings obtained for the algorithms
for each quality indicator separately.

Table 1. Decision matrix.

q1 q2 . . . qn

A1 q1(A1) q2(A1) . . . qn(A1)
A2 q1(A2) q2(A2) . . . qn(A2)
...

...
...

...
Am q1(Am) q2(Am) . . . qn(Am)

The DSC ranking scheme always ranks the best algorithm as one, the sec-
ond best as two, and so on. In our case, we are interested in minimizing the
criteria since lower DSC ranking values are preferable. Before we start with the
PROMETHEE, the decision matrix is transformed in such a way that the DSC
rankings, which are in the same column, are transformed using a standard com-
petition ranking scheme [6]. This should be done because for the DSC rankings
it does not matter if rankings are 1.50, 3.00, and 1.50 or 1.00, 3.00, and 1.00.
In both scenarios having 1.00 and 1.50 means that the algorithm is the best
according to some quality indicator. Since the DSC ranking scheme can never
give a 1.00, 3.00, and 1.00 when comparing three algorithms (since it follows
the idea of fractional ranking), the DSC rankings for each quality indicator are
transformed using the standard competition ranking scheme.

The appropriate method in our case is PROMETHEE II. It is based on pair-
wise comparisons that need to be made between all algorithms for each quality
indicator. The differences between DSC rankings for each pair of algorithms ac-
cording to a specified quality indicator are taken into consideration. For larger
differences the decision maker might consider larger preferences. The preference
function of a quality indicator for two algorithms is defined as the degree of
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preference of algorithm A1 over algorithm A2 as seen in the following equation:

Pj(A1, A2) =

{
pj(dj(A1, A2)), if maximizing the quality indicator

pj(−dj(A1, A2)), if minimizing the quality indicator
, (1)

where dj(A1, A2) = qj(A1)− qj(A2) is the difference between the DSC rankings
of the algorithms for the quality indicator qj and pj(·) is a generalized preference
function assigned to the quality indicator. There exist six types of generalized
preference functions [2]. In our case, usual preference function is used for each
quality indicator because of the importance of any differences between the rank-
ings, which is presented in Equation 2.

p(x) =

{
0, x ≤ 0

1, x > 0
, (2)

After selecting the preference function for each quality indicator, the next
step is to define the average preference index and outranking (preference and net)
flows. The average preference index for each pair of algorithms gives information
of global comparison between them using all quality indicators. The average
preference index can be calculated as:

π(A1, A2) =
1

n

n∑

j=1

wjPj(A1, A2), (3)

where wj represents the relative significance (weight) of the jth quality indicator.
The higher the weight value of a given quality indicator the higher its relative
significance. The selection of the weights is a crucial step in the PROMETHEE
II method because it defines the priorities used by the decision-maker. In our
case, we used the Shannon entropy weight method, which will be explained in
the next subsection. For the average preference index, we need to point out that
it is not a symmetric function, so π(A1, A2) 6= π(A2, A1).

To rank the algorithms, the net flow for each algorithm needs to be calcu-
lated. It is the difference between the positive preference flow, φ(A+

i ), and the
negative preference flow of the algorithm, φ(A−i ). The positive preference flow
gives information how a given algorithm is globally better than the other algo-
rithms, while the negative preference flow gives the information about how a
given algorithm is outranked by all the other algorithms. The positive and the
negative preference flows are defined as:

φ(A+
i ) =

1

(n− 1)

∑

x∈A
π(Ai, x),

φ(A−i ) =
1

(n− 1)

∑

x∈A
π(x,Ai). (4)

The net flow of an algorithm is defined as:

φ(Ai) = φ(A+
i )− φ(A−i ). (5)
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The PROMETHEE II method ranks the algorithms by ordering them ac-
cording to decreasing values of net flows.

3.2 The Shannon entropy weighted method

To find the quality indicator weights, we use the Shannon entropy weighted
method [1]. For this reason, the decision matrix presented in Table 1 needs to
be normalized. Because the smaller value is preferred, the matrix is normalized
using the following equation:

qj(Ai)
′

=
maxi(qj(Ai))− qj(Ai)

maxi(qj(Ai))−mini(qj(Ai))
, (6)

where qj(Ai)
′

is the normalized value for qj(Ai).
The entropy for each quality indicator is defined as:

ej = K
m∑

i=1

W

(
qj(Ai)

′

Dj

)
, (7)

whereDj is the sum of the jth quality indicator in all algorithms,Dj =
∑m

i=1 qj(Ai)
′
,

K is the normalized coefficient, K = 1
(e0.5−1)m , and W is a function defined as

W (x) = xe(1−x) + (1− x)ex − 1.
The weight of each quality indicator used in Equation 3 is calculated using

the following equation:

wj =

1
(n−E) (1− ej)

∑n
j=1

[
1

(n−E) (1− ej)
] , (8)

where E is the sum of entropies, E =
∑n

j=1 ej .

4 Results

4.1 Experimental setup

The data from six algorithms is available from [14]. The algorithms are compared
using 16 test problems. The number of objectives is set to four. More about the
parameters of the test problems and the algorithms can be found in [14]. All test
problems assume minimization of all objectives. Each algorithm was run for each
problem 30 times. Before calculating the quality indicators, each approximated
Pareto front was normalized. In our experiment quality indicators are hyper-
volume (q1), epsilon indicator (q2), r2 indicator (q3), and generational distance
(q4). All of them are unary indicators. Since we are introducing a methodology,
we are not specifically dealing which quality indicators are used. The selection is
up to user to make sure that relevant quality indicators are selected (e.g., if all
quality indicators should be Pareto compliant, convergence, diversity, etc.). For
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calculating the hypervolume, the reference point (1,. . . , 1) is used, while for the
other quality indicators, the reference set consists of all non-dominated solutions
already known from all runs for each algorithm for a given problem. Because the
DSC ranking scheme involves a statistical test for comparing distributions, a
two-sample Anderson-Darling (AD) test is used and the significance level is set
to 0.05. The benefits of using this test are presented in [5].

4.2 Experimental results

In the experiment, three out of six algorithms are randomly selected. The al-
gorithms are: DEMOSP2, DEMONS−II, and NSGA-II. First, for each quality
indicator, the DSC ranking scheme is used to compare the quality indicator
data for a single problem. Further, the DSC rankings obtained for each qual-
ity indicator and each problem are transformed using the standard competition
ranking scheme (see Table 2). The highest ranked algorithm for each problem
and each quality indicator has the best performance.

Table 2. Transformed DSC rankings for each quality indicator of the algorithms,
A1=DEMOSP2, A2=DEMONS−II, and A3=NSGA-II.

Problem
Hypervolume r2 Epsilon

Generational
distance

A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

DTLZ1 2.00 1.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00
DTLZ2 2.00 1.00 3.00 3.00 1.00 2.00 2.00 1.00 3.00 2.00 1.00 3.00
DTLZ3 1.00 1.00 3.00 2.00 1.00 3.00 1.00 1.00 3.00 1.00 1.00 3.00
DTLZ4 1.00 2.00 3.00 1.00 2.00 2.00 1.00 2.00 3.00 1.00 2.00 3.00
DTLZ5 2.00 2.00 1.00 1.00 1.00 3.00 1.00 1.00 1.00 1.00 3.00 2.00
DTLZ6 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00 1.00 2.00 3.00
DTLZ7 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00
WFG1 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00 1.00 3.00 2.00
WFG2 1.00 2.00 3.00 1.00 2.00 2.00 1.00 2.00 2.00 1.00 3.00 1.00
WFG3 1.00 3.00 2.00 1.00 2.00 2.00 1.00 2.00 2.00 1.00 2.00 2.00
WFG4 1.00 2.00 3.00 2.00 1.00 2.00 2.00 1.00 3.00 3.00 2.00 1.00
WFG5 3.00 2.00 1.00 3.00 1.00 1.00 1.00 3.00 2.00 3.00 2.00 1.00
WFG6 1.00 2.00 3.00 2.00 1.00 3.00 1.00 2.00 2.00 3.00 1.00 1.00
WFG7 1.00 2.00 3.00 2.00 1.00 3.00 1.00 2.00 2.00 3.00 2.00 1.00
WFG8 1.00 2.00 2.00 1.00 2.00 3.00 1.00 2.00 2.00 1.00 3.00 2.00
WFG9 1.00 2.00 2.00 1.00 1.00 3.00 1.00 2.00 2.00 3.00 2.00 1.00

Before we find the complete ranking of the algorithms, the weights of each
quality indicator are calculated for each single problem using the Shannon en-
tropy weighted method. The weights for all problems are presented in Table 3.

Then, the PROMETHEE II method is used to rank the algorithms for each
problem. If the original decision matrix is involved in the PROMETHEE II
calculations, the preference function that is used is the one for minimizing the
quality indicator, while if the normalized matrix is used, the preference function
is the one used to maximize the quality indicator. In our case, we have a set
of three algorithms A = {A1, A2, A3} that need to be compared according to
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Table 3. Weights for each quality indicator.

Problem q1 q2 q3 q4 Problem q1 q2 q3 q4
DTLZ1 0.25 0.25 0.25 0.25 WFG2 0.14 0.37 0.37 0.12
DTLZ2 0.25 0.25 0.25 0.25 WFG3 0.13 0.29 0.29 0.29
DTLZ3 0.24 0.28 0.24 0.24 WFG4 0.18 0.46 0.18 0.18
DTLZ4 0.18 0.46 0.18 0.18 WFG5 0.26 0.22 0.26 0.26
DTLZ5 0.57 0.20 0.00 0.23 WFG6 0.19 0.19 0.47 0.15
DTLZ6 0.25 0.25 0.25 0.25 WFG7 0.18 0.18 0.46 0.18
DTLZ7 0.25 0.25 0.25 0.25 WFG8 0.36 0.14 0.36 0.14
WFG1 0.25 0.25 0.25 0.25 WFG9 0.37 0.12 0.37 0.14

a set of four quality indicators Q = {q1, q2, q3, q4}. The rankings obtained for
PROMETHEE II method are presented on the left side of Table 4. They are
further compared with the rankings obtained by the average ensemble with the
DSC rankings (DSC ensemble I) [6], presented in the middle part of Table 4
and the hierarchical majority vote with the DSC rankings (DSC ensemble II)
[6], presented on the right side of Table 4. From it, we can see that the rankings
obtained using PROMETHEE II with DSC differ from the rankings obtained
using the average ensemble with DSC or the hierarchical majority vote with
DSC only in two bolded problems: DTLZ5 and WFG7.

Table 4. Ensemble combiner for the algorithms: A1=DEMOSP2, A2=DEMONS−II,
and A3=NSGA-II.

Problem
PROMETHEE II DSC ensemble I DSC ensemble II
A1 A2 A3 A1 A2 A3 A1 A2 A3

DTLZ1 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00
DTLZ2 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00
DTLZ3 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00
DTLZ4 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00
DTLZ5 2.00 3.00 1.00 1.00 2.50 2.50 1.00 2.50 2.50
DTLZ6 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00
DTLZ7 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00
WFG1 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00
WFG2 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00 2.00
WFG3 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00 2.00
WFG4 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00
WFG5 3.00 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00
WFG6 1.00 2.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00
WFG7 1.00 2.00 3.00 1.50 1.50 3.00 1.00 2.00 3.00
WFG8 1.00 2.50 2.50 1.00 2.50 2.50 1.00 2.50 2.50
WFG9 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00

To see what happens on a single problem, let us focus on the DLTZ5 prob-
lem. The decision matrix and its normalization are presented at top of Table 5.
The transformed DSC rankings for the r2 indicator and the DLTZ5 problem are
1.00, 1.00, and 1.00. Further, there is a problem in the normalization process
because the normalized rankings are indeterminate forms (i.e., 0/0) [11], so the
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weight or the relative significance of this quality indicator can not be calculated.
However, according to this quality indicator and the obtained DSC rankings, the
compared algorithms are the same and they are all winners. Let us suppose that
the weight w3 could be calculated in some way, then the part of the average pref-
erence index that is related to the q3 indicator is a product of w3P3(Ai1 , Ai2),
where i1, i2 = 1, . . . ,m and i1 6= i2. In this case, it will be zero and will not
influence the average preference index, which is used for calculating the positive
and negative flows. Because it can not provide any additional information, it is
removed and the result will be the same as comparing the algorithms regarding
the remaining quality indicators, which in our case are q1, q2, and q4. By remov-
ing the r3 indicator, the decision matrix and its normalization are presented at
the bottom part of Table 5. The weights obtained using the Shannon entropy
weighted method are 0.57, 0.20, and 0.23. The final rankings and the outranking

Table 5. Decision matrices for DLTZ5.

Algorithm
Decision matrix Normalized matrix
q1 q2 q3 q4 q1 q2 q3 q4

DEMOSP2 2.00 1.00 1.00 1.00 0.00 1.00 0/0 1.00
DEMONS−II 2.00 1.00 1.00 3.00 0.00 1.00 0/0 0.00
NSGA-II 1.00 3.00 1.00 2.00 1.00 0.00 0/0 0.50

Algorithm
Decision matrix Normalized matrix
q1 q2 q3 q4 q1 q2 q3 q4

DEMOSP2 2.00 1.00 / 1.00 0.00 1.00 / 1.00
DEMONS−II 2.00 1.00 / 3.00 0.00 1.00 / 0.00
NSGA-II 1.00 3.00 / 2.00 1.00 0.00 / 0.50

flows are given on the left side od Table 6. On the right part of Table 6 the
average preference indices that are used for calculating the positive and negative
flows for DLTZ5 are presented.

Table 6. Outranking flows, PROMOTHEE II rankings, and average indicies for
DLTZ5.

Algorithm φ+ φ− φ Ranking π(Ai, A1) π(Ai, A2) π(Ai, A3)

DEMOSP2 0.11 0.10 0.01 2.00 π(A1, Aj) 0.00 0.08 0.14
DEMONS−II 0.03 0.17 -0.14 3.00 π(A2, Aj) 0.00 0.00 0.06
NSGA-II 0.23 0.10 0.13 1.00 π(A3, Aj) 0.19 0.27 0.00

Using the decision matrix presented in Table 5, the rankings obtained using
the average ensemble and the hierarchical majority vote are the same and are
1.00, 2.50, and 2.50. In the case of hierarchical majority vote, DEMOSP2 is ranked
as first because it wins in three out of four quality indicators, while DEMONS−II

and NSGA-II are ranked second (e.g., 2.5) because both are ranked first in the
case of two quality indicators, then both are second in the case of one quality
indicator and third in the case of one quality indicator. All quality indicators are
assumed equal and the ranking is made by counting the number of wins. However,

169 sciencesconf.org:bioma2018:182832



the obtained rankings using the data-driven preference-based approach are 2.00,
3.00, and 1.00, which are completely different from the other ensembles. From the
left part of Table 6, we can see that NSGA-II has the highest positive flow. The
question is why it is ranked first when DEMOSP2 has two wins. This happens
because the quality indicators that are involved have a data-driven preference
for each of them, which is obtained by the Shannon entropy weighted method.
The quality indicators are ordered as q1, q4, q2, (e.g, hypervolume, generational
distance, and epsilon indicator), starting from the most significant one to the
least significant one. The average preference indices between A1 and A3 that are
used for calculating the positive and negative flows are:

π(A1, A3) =
1

3
[0.57 · 0 + 0.20 · 1 + 0.23 · 1] = 0.14

π(A3, A1) =
1

3
[0.57 · 1 + 0.20 · 0 + 0.23 · 0] = 0.19 (9)

Using the calculations presented in Equation 9, we can see that the average
preference index between NSGA-II and DEMOSP2 is 0.19 and it is a result of
only one win regarding the quality indicator q1, while the average preference
index between DEMOSP2 and NSGA-II is 0.14 and it is smaller even though
it is a result of two wins regarding q2 and q4. This happens because q1 is the
most significant and its weight is much more than the sum of the weights of q2
and q4. In our experiment, the proposed data-driven preference-based approach
gives different rankings from the hierarchical majority vote only for DLTZ5. This
happens because only on that problem the compared algorithms are the same
regarding one of the used quality indicators, which is the r3 indicator. However,
if this happens for other single-problems, the rankings can also differ from the
rankings obtained by a hierarchical majority vote.

Furthermore, the obtained rankings using PROMETHEE II with DSC can
be used as input data for a multiple-problem scenario. The appropriate statis-
tical test is the Friedman test. Using it, the obtained p-value is 0.00, so using
a significance level 0.05, we can conclude that there is a statistical significant
difference between the compared algorithms using a set of benchmark problems.
When comparing MOAs, often more than three algorithms are involved in the
comparison, or especially a new algorithm is compared with state-of-the-art al-
gorithm as a multiple comparisons with a control algorithm. When the number
of algorithms increases the DSC rankings can be affected when correcting the
p-values to control the FWER. In such a scenario, it is better to use multiple
Wilcoxon tests, one for each pairwise comparison and then combine the p-values
to find the actual p-value for the scenario. More about this scenario and the
DSC approach is presented in [8]. If we are interested in to compare them using
a data-driven preference-based approach, we just need to use PROMETHEE II
with DSC instead of the original DSC ranking scheme to find the rankings for
each pairwise comparison on each problem.
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4.3 Discussion

Comparing the performance of a new MOA with the performance of state-of-
the-art MOAs is a crucial task in order to find its strengths and weaknesses.
Different performance metrics can be used for evaluation and they are usually
combined with statistical tests to ensure that the results are significant. Several
previously proposed approaches are focused on comparing MOAs using a set of
quality indicators. They follow the idea of ensemble learning, but all of them
assume that all quality indicators are equal. The performance metric and the
way how the algorithms will be compared also depend on the user preference
or the concrete application. For example, in our previous work, we presented
an average ensemble and a hierarchical majority vote based on counting wins
according to different quality indicators, but in this paper we proposed a data-
driven preference-based approach that is a combination of PROMETHEE II
and DSC ranking scheme. According to the user preference all involved quality
indicators are still equal, but the data-driven preference changes this by using
its entropy. Organizing the DSC rankings for each quality indicator and each
problem into a decision matrix, the Shannon entropy weighted method is used
to find the relative significance of each quality indicator for each problem. The
relative significance of each quality indicator is related to its entropy, which is the
amount of information conveyed by it. The experimental results have shown that
the preference-based approach performs more or less as a hierarchical majority
vote. However, it can give different rankings, and the algorithm can overrank
another one even if it has a lower number of wins, but it wins in most preferred
quality indicator(s). Also, if there is a quality indicator for which all compared
algorithms perform the same (they all win), it does not have an influence in the
comparison and it can be removed from the set of quality indicators. Comparing
the hierarchical majority vote and data-driven preference-based ranking, we can
say that the hierarchical majority vote is more appropriate in cases where the
performance is estimated by counting wins and loses such as in the case of
dynamic multi-objective optimization, otherwise data-driven preference-based
ranking can be used in cases when the influence of each quality indicator is
required.

5 Conclusion

In this paper, we presented a data-driven preference-based approach for com-
paring MOAs using a set of quality indicators. The approach is a combination
of PROMETHEE II, which is a method in MCDA, and a DSC ranking scheme,
that gives more robust statistical results and is based on comparing distribu-
tions instead of using only one statistic to describe the data. We compared our
method with previously proposed methods where all involved quality indicators
are assumed equal. We have shown that our method performs similar to a hierar-
chical majority vote, but also can give different rankings regarding the influence
of each quality indicator, which is its preference and is estimated according to
its entropy.
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Abstract. By using seismic isolation systems at the base of structures,
structures and equipment in structures are protected by the reduction
of total acceleration and rigid-body motion of the structure. Addition-
ally, a limit for the displacement of the base isolation system have to be
considered in the design. In that case, the optimum period and damping
ratio of isolation system, which take the superstructure and earthquake
excitation characteristic into account, important. In order to obtain an
optimum design, an optimization methodology using time history anal-
yses is adopted with a bioinspired algorithm called bat algorithm (BA).
The BA based method is numerically demonstrated on a multi-story
shear building benchmark problem considering the three cases of the
maximum isolation system damping ratio. Also, the results are com-
pared with harmony search (HS) based method and it is shown that
the reduction of the ratio of the peak roof acceleration and peak ground
acceleration is better than HS for the proposed method.

Keywords: Seismic Isolation System, Optimization, Metaheuristic al-
gorithms, Bat algorithm, Structural Control, Bioinspired Algorithms.

1 Introduction

In cases where the conventional earthquake resistant structural design is inad-
equate, new approaches have emerged in the design of the earthquake resistant
structures. One of those approaches is seismic isolation which reduces the impact
of seismic loads on the structure. Superstructure of a seismically isolated struc-
ture behaves as a rigid block and a significant portion of the displacement occurs
in the isolation system [1]. Thus, structural safety can be improved by preventing
damage to the structural system and non-structural elements. A typical seismi-
cally isolated building typically consists of two main parts as superstructure and
isolation floor. The isolation system consists of isolators and/or dampers placed
between the rigid base floor and the foundation.

Seismic isolation systems aim to protect structural integrity by reducing base
displacements to practical and economical limits and to protect the vibration-
sensitive contents placed in the building by decreasing floor accelerations. Seis-
mically isolated buildings can generally reach the afore mentioned targets when
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they are exposed to far-fault earthquakes. However, these buildings may be chal-
lenged in simultaneously reducing base displacements and floor accelerations in
case of the near-fault earthquakes [2]. Furthermore, if the excessive base dis-
placements exceed the ultimate displacement limits, it can lead to rupture or
buckling of the isolator [3]. In order to maintain structural integrity, it is nec-
essary to reduce the base displacements below the limits, which depend on the
capacity of isolator displacement and seismic gap. Therefore, the need for addi-
tional damping may arise. If additional damping is used, the base displacements
can be reduced while the floor acceleration and interstory drifts can be increased.
For this reason, it is pointed out that the use of right amount of damping is ex-
tremely important and may be a dilemma [4–7]. Therefore, seismic performance
of seismically isolated buildings exposed to near-fault earthquakes have recently
been investigated with increased interest.

On the other hand, a building may be exposed to both far-fault and near-fault
earthquakes due to its location. Thus, it is desired that the building achieves a
successful seismic performance through alternative solutions under both near-
fault and far-fault earthquakes. Such as using different types of isolators or
adding viscous damping to the isolation systems. Hall [5] showed that the use of
an optimum amount of additional damping can reduce base displacements with-
out increasing floor accelerations or interstory drifts. Makris [8] investigated the
effectiveness of viscous, viscoplastic and friction damping to protect the seismi-
cally isolated buildings under near-fault earthquakes. Providakis [9] numerically
investigated performances of lead rubber and friction pendulum systems equiped
with additional viscous dampers in the isolation systems under far-fault and
near-fault earthquakes. Lu and Hsu [10] experimentally investigated variable-
frequency rocking bearings with variable mechanical properties in order to avoid
excessive isolator displacements due to the near-fault earthquakes. In a compre-
hensive parametric study [11], the seismic performance of isolation systems with
different amount of damping under near-fault earthquakes was investigated. In
recent years, it has been proposed to use semi-active control systems, which can
adapt themselves to external loads during the lifetime of buildings as a solution
to the problems that seismically isolated buildings may face under near-fault
earthquakes [12, 13]. On the other hand, in order to overcome above-mentioned
dilemma, it can be a good alternative to optimize the passive isolation systems,
which are often preferred in terms of ease of application and design. Studies
on the optimization of seismically isolated buildings using different methods are
available in the literature by using metaheuristic methods such as genetic algo-
rithm [14] and harmony search [15].

2 Seismically Isolated Benchmark Building Model

In order to ensure that the seismically isolated buildings can succeed under both
near-fault and far-fault earthquakes, the optimization of seismic isolation sys-
tems is carried out by using a methodology using time history analyses adopted
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with Bat Algorithm (BA) in this study. The equation of motion of the N-story
superstructure is given by Eq. (1) [16].

M ẍ + Cẋ +Kx = −MR(ẍ0 + ẍg) (1)

in which, M, C and K are the mass, damping and stiffness matrices of super-
structure, respectively. R is the vector of influence, ẍ0 is the relative acceleration
of the base and ẍg is the earthquake acceleration. The relative floor displace-
ment vector of the building with respect to base, the velocity vector and the
acceleration vector are defined as x, ẋ and ẍ, respectively. Superstructures of
the seismically isolated buildings can be modeled as a shear building [17] as seen
in Fig. 1. The equation of motion of the base given in Eq. (2) is used for creating
the shear building model [18].

Fig. 1. Schematics of the prototype seismically isolated structure
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m0ẍ0 + c1ẋ1 + k1x1 + fr = −M0üg (2)

Here, m0 is the mass of base and fr is the restoring force generated in the
isolation system. c1 and k1 are the damping and stiffness of the first story,
respectively. The behavior of a linear seismic isolation system is defined by the
Kelvin-Voight model given in Eq. (3), which is consisting of a linear spring
in parallel with linear damping, where the effective viscous damping constant
and the effective stiffness for the isolation system are symbolized as c0 and k0,
respectively.

fr = c0ẋ0 + k0x0 (3)

The effective stiffness of the isolation system (k0) can be calculated by Eq.
(4), in which M is the total mass of the seismically isolated building and T0

is the isolation period. Then, considering the isolation system damping ratio of
ξ0, the effective viscous damping constant of the isolation system (c0) can be
obtained by using Eq. (5).

k0 =
4Mπ2

T 2
0

(4)

c0 =
4Mπξ0
T0

(5)

3 The Optimization Methodology

A Bat-algorithm-adopted time history analysis program has been developed for
the optimization of seismic isolation systems for structures by using Matlab
with Simulink [19]. In the time history analyses, the conventional Runge-Kutta
method with a sensitive time step of 0.001s is used.

In the optimum design, maximum limits of peak isolation system displace-
ment and the design variables such as the isolation period (T0) and the isolation
damping ratio (ξ0) should be within a defined realistic range of physical appli-
cation. The most important factor for seismically isolated structures in order to
protect the contents of the structure and reduce earthquake induced forces is
the reduction of the floor accelerations. In that case, the optimization objective
is to minimize the ratio of peak roof acceleration (PRA) to the peak ground
acceleration (PGA) by obtaining an optimum set of isolation system parameters
defined in a chosen application range without exceeding a chosen peak isolation
system displacement limit. The time history analyses of the system are done to
find the responses such as x, ẋ and ẍ. Then, the maximum peak value of the top
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story acceleration (by adding the ground acceleration for the total acceleration)
is used as PRA. The maximum value of ground acceleration are used as PGA.

The bat algorithm (BA) is a bioinspired metaheuristic algorithm developed
by Yang [20] and it is inspired from the echolocation behaviour of bats. The
proposed methodology can be summarized as the following five steps:

Step 1: In the first step, the design constants of the problem are defined.
These design constants include the properties of the main structure, ranges of
design variables, the acceleration data of earthquake excitations considered in
the optimization process and the algorithm-specific parameters of the bat algo-
rithm. The algorithm-specific parameters are the bat population (n), the limits
of pulse frequency (fmin and fmax), the pulse emission rate (ri) and the loud-
ness (Ai). The optimization process considers the analyses conducted for various
earthquake excitations in order to find a general solution.

Step 2: In nature, microbats use echolocation for two reasons such as the
sensing of distance and the search for prey. In this process, the bats use frequency
tuning by varying the frequency, loudness and pulse emission rates when homing
for preys. These characteristics are formulated in the bat algorithm and the
location of a bat corresponds to the position vector. For the current study, the
position vectors (di) from i=1 to n are generated by randomization of design
variable values within the defined ranges/limits. The candidate design variables
which have a peak isolation system displacement limit exceeding the allowable
limit, are regenerated.

Additionally, the objective function (OF) which is minimized is also cal-
culated and stored for all position vectors. In Eq. (6), the ith position vector
including the design variables such as the isolation period (T0i) and the isola-
tion damping ratio (ξ0i) is shown. The objective of the optimization problem is
to minimize the PRA/PGA for the excitation with the highest value and the
optimization process continue until the minimization of the objective function
to a desired percentage (DP) value defined by the user. It is formulated as seen
in Eq. (7) for the ith position vector (OFi).

di = (T0i; ξ0i) i = 1 : n (6)

OFi =
PRA

PGA
≤ DP i = 1 : n (7)

Step 3: In this step, the position vectors in the bat algorithm are updated
according to the equations of the bat algorithm given as Eqs. (8)-(10). First, the
frequency (fi) is adjusted and then, the velocity (vi) is updated. The parame-
ter; β is a random number between 0 and 1. The best position vector with the
minimum objective function value is defined as d∗ and the upper scripts repre-
sents the iteration number (t). If the generated design variables are out of the
range, the variables are assigned with the nearest value within the range. Also,
the regeneration of the design variables is done in case of the violation of peak
isolation system displacement limit.
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fi = fmin(fmax − fmin)β (8)

vti = vt−1
i + (dti − d∗)fi (9)

dti = dt−1
i + vti (10)

Step 4: In this step, the updated position vectors are accepted or not by
using the criterion test. If the pulse rate is smaller than a randomly generated
number between 0 and 1, local solutions around the best position vector are
generated. If the random number is smaller than the loudness and the objective
function values for the updated position vectors design variables are better than
the existing best solution, then the updated position vectors are accepted. In all
other cases, the values of the previous iteration are kept. Also, the value of pulse
rate (ri) is increased according to iteration number, while the value of loudness
(Ai) is reduced as formulated in Eqs. (11) and (12). In these formulations, α and
γ are constant values and are generally taken as 0.9.

At+1
i = αAt

i (11)

rt+1
i = r0i (1 − exp(−γt)) (12)

The pseudo code of the step 4 is as follows:
if (random number ≥ ri)
Select a position vector
Generate a local solution around the selected position vector
end if
if (random number ≤ Ai and (OFi) ≤ f(d∗))
Accept the updated position vectors
Increase ri and reduce Ai

end if
Step 5: The iterative process continues until the objective function of the

best solution is smaller than DP. The program can lock if the user assigns a
physically impossible DP value. In that case, the DP value has to be increased
automatically. The program has an ability to increase the DP value after 600
attempts by 5%.

4 Case Study

As the numerical investigation, a ten-storey shear building is used with same
properties for all stories. The critical period of the structure (T) is 1 s. The
mass, stiffness coefficient and damping coefficient of a storey are 360 t, 650
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MN/m and 6.2 MNs/m, respectively [20]. Also, the mass of the isolation level
(m0) is 360t. The optimum results are also compared with the harmony search
(HS) algorithm results.

In the numerical example, the range of the isolation period is between 2 and 4
seconds, which represents a typical range for seismically isolated buildings [21].
The isolation system damping ratios were optimized for three different cases.
The lower bound of the isolation system damping ratios are 0, but the upper
bounds are 30%, 40% and 50% for case1, 2 and 3, respectively. The peak isolation
system displacement limit was taken as 50 cm. The DP value was taken as 0 and
the best possible value was searched by the increase of the value.

The algorithm specific parameters such as the minimum frequency (fmin),
the maximum frequency (fmax), the initial pulse rate (r0i ) and initial loudness
(A0

i ) were taken as 0, 1, 0.5 and 1, respectively. The population of bats (n) is
5 in the numerical example. The earthquake excitation used in the example are
described in Table 1. These records were downloaded from Pacific Earthquake
Engineering Research Centre (PEER) [23].

In Table 1, the peak values of the ground acceleration (PGA), ground velocity
(PGV) and ground displacement (PGD) are also shown. Taft and El Centro
results represent far-fault motions, while other ones are the near-fault records
with high PGV pulses. In Table 2, the optimum results of BA are presented with
HS results.

Table 1. Earthquake records used in the optimization

Earthquake Date Station Component PGA (g) PGV (cm/s) PGD (cm)

Imperial Valley 1940 117 El Centro I-ELC180 0.313 29.8 13.32
Kern Country 1952 1095 Taft TAFT111 0.178 17.5 8.99

Tabas 1978 9101 Tabas TAB-TR 0.852 121.4 94.58
Loma Prieta 1989 16 LGPC LGP000 0.563 94.8 41.18

Erzincan 1992 95 Erzincan ERZ-NS 0.515 83.9 27.35
Northridge 1994 24514 Sylmar SYL360 0.843 129.6 32.68

Table 2. Optimum results of numerical example

Algorithm Case
Optimum isolation Optimum isolation Objective Base isolation

period (s) damping ratio (%) function displacement (cm)

BA
1 3.1070 30 0.6076 50
2 3.4732 40 0.5501 50
3 3.6712 50 0.5439 50

HS
1 3.1009 29.96 0.6085 49.96
2 3.4658 39.53 0.5504 50
3 3.6638 49.75 0.5442 49.97
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As seen from the results, BA is more effective than HS in minimization of
the objective function. It seems that the maximum limits of isolation system
damping ratios are the same for the optimum results and BA is effective in finding
the exact solution. The time histories for the isolation system displacement and
the total roof accelerations are plotted for case 3 obtained by BA. The total roof
accelerations are also compared with the fixed based structure (Figs. 2-7).

Fig. 2. The response of structure for Taft excitation

5 Discussion and Conclusion

As seen from the time history plots and the maximum responses, the base iso-
lation system optimized by the methodology adopted with BA is effective in
obtaining a good passive seismic control. As seen from the optimum results, the
aim for the isolation system damping ratio is the maximum allowable value in
order to maintain the maximum isolation system displacement limit. The effec-
tiveness of the method can be also recognized from the maximum displacement
of the isolation system because this value is at the limit for the optimum vari-
ables. Also, a conclusion can be derived for the optimum results of different
cases. The limitation of the isolation system damping ratio prevents the increase
of the optimum period of the isolation system because of the limitation of the
base displacement. For that reason, the OF of Case 1 is higher than the other
cases with high maximum damping ratio range and this situation is the opposite
of the known increasing effect of damping on the roof acceleration of structures.
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Fig. 3. The response of structure for El Centro excitation

Fig. 4. The response of structure for Erzincan excitation
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Fig. 5. The response of structure for Tabas excitation

Fig. 6. The response of structure for Sylmar excitation
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Fig. 7. The response of structure for Loma Prieta excitation

When the optimum results of BA and HS based methods are compared, BA
finds more sensitive results compared to HS since the damping ratio and the
isolation system displacements are exactly at the limit for BA.

In future studies, the robustness of the isolation system against different
ground excitations, the sensitivity analyses of algorithm-specific parameters, dif-
ferent cases of the seismic isolation system displacement limits and the optimiza-
tion of nonlinear isolation systems can be investigated by using the proposed
methodology.
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11. Alhan C, Öncü-Davas S., 2016, Performance limits of seismically isolated buildings
under near-field earthquakes, Eng struct, 116:8394

12. Mehrparvar, B., Khoshnoudian, T., 2012, Performance-based semi-active control
algorithm for protecting base isolated buildings from near-fault earthquakes, Earth-
quake engineering structural dynamics, 11:4355.

13. Ghaffarzadeh, H., 2013, Semi-active structural fuzzy control with MR dampers
subjected to near-fault ground motions having forward directivity and fling step,
Smart structures and systems, 12(6):595-617.

14. Pourzeynali, S., Zarif, M., 2008, Multi-objective optimization of seismically iso-
lated high-rise building structures using genetic algorithms, Journal of sound and
vibration, 311:11411160.
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Gebrail Bekdaş1[0000−0002−7327−9810], Aylin Ece Kayabekir1, Sinan Melih
Nigdeli1[0000−0002−9517−7313] and Yusuf Cengiz Toklu2

1 Istanbul University, Civil Engineering Department Avcılar/Istanbul 34320, Turkey,
bekdas@istanbul.edu.tr, ecekayebekir@gmail.com, melihnig@istanbul.edu.tr,

cengiztoklu@gmail.com
2 Okan University, Civil Engineering Department Tuzla/Istanbul 34959, Turkey,

cengiztoklu@gmail.com

Abstract. By using the minimum total potential energy of a structural
systems subjected to a defined loading condition, the solution of the re-
sponses of system can be found, because systems are in the equilibrium
state only in case of minimum energy. In that case, the minimum value
of a system can be searched by using randomly generated design vari-
ables which are possible solution of the degrees of the system. Thus,
metaheuristic methods combined with total potential energy minimiza-
tion (TPO/MA) are an effective method to be an alternative to con-
ventional methods. In this study, several metaheuristic algorithms are
used in the methodology to solve the responses of cable net structures.
The efficiency of the methods is tested on four cable structures which
have increasing number of design variables from example 1 to 4. The
investigated algorithms are flower pollination algorithm, teaching learn-
ing based optimization and Jaya algorithm. All algorithms are effective
and robust on finding the design variables for minimum energy, but Jaya
algorithm seems as the best one because of the simply application to the
problem.

Keywords: Total potential energy method using metaheuristic algo-
rithms, cable nets, metaheuristic methods, flower pollination algorithm,
teaching learning based optimization, Jaya algorithm

1 Introduction

Cable net structures are the systems which are only generated by cable element.
These structures are in the group of truss-like structures, but the nature of
the cables has a special condition since the cable members cannot carry the
compressive force. In that case, the cable members are in tension or unloaded.
Due to this behavior, the stability of the cable net structures is provided by
applying pretension forces to several or all members. In practice, the general
application area of cable nets are roofs.

185 sciencesconf.org:bioma2018:183720



Several methods have been proposed for non-linear analyses of cable net
structures and the following methods which are the variants clasical approaches
like the finite elements and sttifness methods:

- The finite deflection theory for space structures [1]
- The direct stiffness method [2]
- An iterative approach highly nonlinear problems [3]
- A method based on discrete mathematical model for single layer cable nets

[4]
- A method using a series of finite length curved elements [5]
- A finite element model for members subjected to static and dynamic loads

[6]
- A search method based on minimum potential energy theory [7]
- A method using a small strain elastic catenary element [8] in a dynamic

relaxation technique [9]
- A method proposing a way of generation of stiffness of cable members for

fast computations [10]
- An iterative Newton-Raphson method [11]
- A method separating the complexity of nonlinear numerical algorithm from

the basic principles [12]
- The investigation of limit state behavior and the effect of pre-stressing in

improving the bearing capacity [13]
- An exact geometrical nonlinear equilibrium equations in non-dimensional

form [14]
- A method combining analytic solution and virtual work principle for a

two-node catenary cable element [15]
- An investigation of minimum complementary energy involving on stress

components [16]
- A nonlinear closed form static computational model [17]
- A generalized displacement control method [18]
- A combined method of nonlinear displacement method and force density

method [19]
- A formulation of the analyses of Suspen-Dome structures with multi-node

sliding cable members [20]
- A point based iterative method adapting a simple convergence procedure

[21]
- An incremental iterative solution based on the Newmark direct integration

method and the Newton-Raphson method [22]
As an alternative solution to the mentioned classical based methods, meta-

heuristic algorithms employing methods can be an effective way for structural
analyses. The minimization of total potential energy was used by employing
the music-inspired algorithm called harmony search for the analyses of cable
structures [23].

In the present study, the efficiency of three metaheuristic algorithms is eval-
uated for the analyses of cable net structures using total potential energy min-
imization. The investigated algorithms are the bio-inspired flower pollination
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algorithm (FPA) and parameter free algorithms such as teaching learning based
optimization (TLBO) and Jaya algorithm (JA). These algorithms are new gen-
eration algorithms and these algorithms need performance evaluation. The in-
vestigation is presented on four cable-nets structures with different sizes and
number of design variables.

2 Methodology

The presented study investigates the effect of different algorithms on cable net
structures for the total potential optimization using metaheuristic algorithm
used for the nonlinear analyses of structural systems [23–27]. The aim of the
method is to minimize the total potential energy by generating candidate so-
lutions for the design variables of the problem which are the displacements of
nodal point free in motion. For example, a 2 member structural system with a
single displacement is given in Fig. 1. The deformed shape of the system can be
as 1a, 1b, 1c, 1d and 1e. The form with the minimum potential energy is the
stable equilibrium position. In that case, the total potential energy (Π) of the
system can be found as shown in Eq. (1). This objective function includes the
strain energy (u) and the work done by external forces (w) which are shown as
Eq. (2) and Eq. (3), respectively.

Fig. 1. An example for displacement range

Π = U −W (1)

U =
1

2

∫
εTσ dV (2)

W =

∫
(Txu+ Tyv + Tzw) dS (3)
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εT , σ and V represent the strain vector, stress vector and volume. Tx, Ty and Tz
are the forces in unit area in the corresponding directions and the u, v, and w are
the displacements at x, y and z directions, respectively. When the corresponding
modifications are done for truss-like structures, the objective function (Π) takes
the form given as Eq. (4).

Nm∑

j=1

ejAjLj −
Np∑

i=1

Piui (4)

Aj and Lj represent the area and length of jth structural member for a system
with Nm member subjected to Np loads. The forces are shown with Pi for the
ith force and ui is generalized deflections coupled with the loads. ej is the strain
energy density of ith member which is given as Eq. (5) if the cable is in tension
or Eq. (6) if the cable is in compression. Ei and εi are the elasticity modulus
and strain of ith member, respectively.

ei =
1

2
Eiε

2
i (5)

ei = 0 (6)

In the study, three algorithms which have different specific properties, are
chosen. These algorithms are FPA developed by Yang [28], TLBO developed by
Rao et al. [29] and JA developed by Rao [30]. In order to focus on the numerical
investigations and the analyses of the problem, the general formulations of the
algorithms are skipped and these formulations can found in the cited studies.
Only specific differences are mentioned in the study.

FPA is generated by considering flower constancy and different types of flower
pollinations such as biotic, abiotic, cross and self-pollinations. Two different
phases such as global and local pollinations are created and these phases are
chosen by using a switch probability (ps). Global pollination uses a Levy distri-
bution while a linear distribution used for local one.

TLBO simulates the teaching and learning processes of a class. Two phases
of education which are teacher and learner phases, are proposed to solve the
problems. These two phases are consequently applied for all iterations and the
only user defined parameter is the population.

JA is a single phase algorithm and contains no specific parameters. The name
comes from the Sanskrit word which is victory in English. The convergence
is provided by considering the best and the worst existing solutions. In the
study, a single phase algorithm (JA) and two double phase algorithms using a
switch probability (FPA) and consequent application of both phases (TLBO)
are compared.
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3 Numerical examples

3.1 Example 1: Flat cable net 1x1

In the first example, mathematical model with one freedom in the Fig. 2 is solved
using total potential energy minimization (TPO/MA) method. In this model
each of cables is identical. Cross sectional area of each cable and the modulus of
elasticity are 0.785 mm2, 124800 N/mm2 respectively. The pretension force with
an intensity of 200 N is applied each of cable and there is a point load on the
node number 3 with intensity of 15 N. Optimum displacement of the node 3 and
the total potential energy values of the system obtained with TLBO, FPA, JA
are presented in Table 1. In the Tables, the displacements in x, y and z directions
are shown by δx, δy and δz respectively.

Fig. 2. Flat cable net 1x1 [23]

Table 1. TP energies (Nmm) and displacements (mm) for example 1

Node
FPA TLBO JA

δx δy δz δx δy δz δx δy δz
3 0 0 -6.98 0 0 -6.98 0 0 -6.98

Minimum TP (kNm) 272.4704 272.4704 272.4704
Average TP (kNm) 272.4704 272.4704 272.4704
Standard deviation 0 0 0
Number of analyses 10024 24576 12414

3.2 Example 2: Flat cable net 2 x 1

In the second example, a flat system with two freedoms is solved (Fig. 3). The
cross sectional area of each cable is 2 mm2 and the modulus of elasticity is 11000
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N/mm2. The pretension force is 500 N in the all cables. Point forces with the
intensity of 200 N are applied to nodes 1 and 2. Optimum displacement of nodes
and the total potential energy values of the system are presented in Table 2.

Fig. 3. System with seven cables [23]

Table 2. TP energies (Nmm) and displacements (mm) for example 2

Node
FPA TLBO JA

δx δy δz δx δy δz δx δy δz
1 0 -3.3 -199.75 0 -3.3 -199.75 0 -3.3 -199.75
2 0 -3.3 -199.75 0 -3.3 -199.75 0 -3.3 -199.75

Minimum TP (kNm) -37442.86 -37442.86 -37442.86
Average TP (kNm) -37442.86 -37442.86 -37442.86
Standard deviation 0 0 0
Number of analyses 9832 20456 11195

3.3 Example 3: Flat cable net 2 x 2

In the third example, a flat cable system consists of 12 cables with 4 free nodes is
investigated, as shown in Fig 7. Cross-sectional area and the modulus of elasticity
multiplication of each member is 97.97 kN. A pretension force with 200 kN exists
in every cable and point loads are applied to nodes 4, 5 and 8. Displacement of
the free nodes and the total potential energy values of the system can be seen
in Table 3.
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Fig. 4. Flat cable net 2 x 2 [23]

Fig. 5. Spatial cable network system [23]
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Table 3. TP energies (Nmm) and displacements (mm) for example 3

Node
FPA TLBO JA

δx δy δz δx δy δz δx δy δz
4 -0.07 -0.07 -12.17 -0.07 -0.07 -12.17 -0.07 -0.07 -12.17
5 0.04 -0.07 -11.18 0.04 -0.07 -11.18 0.04 -0.07 -11.18
8 -0.07 0.04 -11.18 -0.07 0.04 -11.18 -0.07 0.04 -11.18
9 0.04 0.04 -5.59 0.04 0.04 -5.59 0.04 0.04 -5.59

Minimum TP (kNm) 706.8089 706.8089 706.8089
Average TP (kNm) 706.8089 706.8089 706.8089
Standard deviation 0 0 0
Number of analyses 11365 24850 12461

3.4 Example 4: Spatial Cable Network

In the last example, a spatial cable network system consisting of 38 cables is
solved. This system has symmetry with respect to both x and y axes. The cross
sectional areas and the pretension forces are 350 mm2 and 90 kN in x-direction
cables and 120 mm2 and 30 kN in y-direction cables, respectively. The modulus
of elasticity is 160 kN/mm2 in the all cables. The concentrated loads of 6.8 kN
are applied to all internal nodes. The z-coordinates of quarter system and results
can be seen in Table 4.

Table 4. TP energies (Nmm) and displacements (mm) for spatial cable network

Node z-coord
FPA TLBO JA

δx δy δz δx δy δz δx δy δz
1 1000.0 0 0 0 0 0 0 0 0 0
2 2000.0 0 0 0 0 0 0 0 0 0
3 3000.0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
7 819.5 -5.03 0.40 29.48 -5.03 0.40 29.48 -5.03 0.40 29.48
8 1409.6 -2.23 0.40 17.12 -2.23 0.40 17.12 -2.23 0.40 17.12
9 1676.9 0 -2.36 -3.19 0 -2.36 -3.19 0 -2.36 -3.19
13 0 0 0 0 0 0 0 0 0 0
14 687.0 -4.93 0 42.89 -4.93 0 42.89 -4.93 0 42.89
15 1147.8 -2.55 0 44.32 -2.55 0 44.32 -2.55 0 44.32
16 1317.6 0 0 42.13 0 0 42.13 0 0 42.13

Minimum TP (kNm) 6515666.7 6515666.7 6515666.7
Average TP (kNm) 6515666.7 6515666.7 6515666.7
Standard deviation 0 0 0
Number of analyses 12270 27106 12378
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Table 5. The TP results of example 3 for different ps values

ps Minimum TP Analyses Number

0 706.81 5693
0.1 706.81 2220
0.2 706.81 5837
0.3 706.81 15038
0.4 706.81 4173
0.5 706.81 3157
0.6 706.81 9424
0.7 706.81 12641
0.8 706.81 14958
0.9 706.81 13995
1.0 706.81 18491

Table 6. The TP results of example 4 for different ps values

ps Minimum TP Analyses Number

0 6515667 16723
0.1 6515667 10567
0.2 6515667 15457
0.3 6515667 14375
0.4 6515667 17072
0.5 6515667 8235
0.6 6515667 19066
0.7 6515667 4048
0.8 6515667 14911
0.9 6681623 16302
1 6858222 19462

4 Discussion and Conclusion

For the first numerical example with three design variables, all algorithms are
effective for all 30 runs of the iterative process, but TLBO needs nearly double
number of analyses to reach to the optimum value. The second example has
6 design variables and the algorithm are also effective and robust. When the
number design variables are increased to 12, the algorithm can also show the
same efficiency. The last example is a spatial cable network with the most design
variables. The efficiency and robustness of all algorithms prove the feasibility of
the TPO/MA as an alternative solution method.

When the algorithms are compared, FPA and JA are better than TLBO in
computational effort. JA seems as a better choice since it is simple to apply.
Essentially, JA has no specific parameters. In FPA, the choosing of switch prob-
ability (ps) may be effective on the solution. In the present study, ps is taken as
0.5. It is chosen according to tests done for various ps values for examples 3 and
4. The TP values are given in Table 5 and 6 for example 3 and 4, respectively.
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The result of the third example is the same for different ps values, but when
ps is near to 1 (higher probability for the global pollination), the best solution
cannot be found for the 20000 maximum iterative analyses for the example 4.
Also, the number of analyses are generally between 0.4-0.6 for ps values. In that
case, using pn as 0.5 may be the best option.

Since TLBO uses two phases of optimization, it uses 2 round of analyses in
a single iteration. This situation increases the computation time and maximum
number of analyses are 40000 for TLBO while 20000 maximum analyses are done
for the others. All algorithms are effective to find the precise analyses results for
the maximum number of analyses.

References

1. Saafan, S. A. (1970). Theoretical analysis of suspension roofs. Journal of the Struc-
tural Division, 96(2), 393-405.

2. Baron, F., Venkatesan, M. S. (1971). Nonlinear analysis of cable and truss structures.
Journal of the Structural Division, 97(2), 679-710.

3. Kar, A. K., Okazaki, C. Y. (1973). Convergence in highly nonlinear cable net prob-
lems. Journal of the Structural Division, 99(3), 321-334.

4. West, H. H., Kar, A. K. (1973). Discretized initial-value analysis of cable nets.
International Journal of Solids and Structures, 9(11), 1403-1420.

5. Gambhir, M. L., de V. Batchelor, B. (1977), A finite element for 3-D prestressed
cablenets. Int. J. Numer. Meth. Engng., 11: 16991718.

6. Ozdemir, H. (1979). A finite element approach for cable problems. International
Journal of Solids and Structures, 15(5), 427-437.

7. Monforton, G. R., El-Hakim, N. M. (1980). Analysis of truss-cable struc-
tures.Computers and Structures, 11(4), 327-335.

8. Jayaraman, H. B., Knudson, W. C. (1981). A curved element for the analysis of
cable structures. Computers and Structures, 14(3), 325-333.

9. Lewis, W. J., Jones, M. S., Rushton, K. R. (1984). Dynamic relaxation analysis of
the non-linear static response of pretensioned cable roofs.Computers and structures,
18(6), 989-997.

10. Desai, Y. M., Popplewell, N., Shah, A. H., Buragohain, D. N. (1988). Geometric
nonlinear static analysis of cable supported structures. Computers and structures,
29(6), 1001-1009.

11. Eisenloffel, K., Adeli, H. (1994). Interactive microcomputer-aided analysis of tensile
network structures. Computers and structures, 50(5), 665-675.

12. Kwan, A. S. K. (1998). A new approach to geometric nonlinearity of cable struc-
tures. Computers and structures, 67(4), 243-252.

13. Liew, J. R., Punniyakotty, N. M., and Shanmugam, N. E. (2001). Limit-state anal-
ysis and design of cable-tensioned structures. International Journal of Space Struc-
tures, 16(2), 95-110.

14. Gasparini, D., Gautam, V. (2002). Geometrically nonlinear static behavior of cable
structures. Journal of Structural Engineering, 128(10), 1317-1329.

15. Wang, C., Wang, R., Dong, S., Qian, R. (2003). A new catenary cable element.
International Journal of Space Structures, 18(4), 269-275.

16. Kanno, Y. and Ohsaki, M. (2005). Minimum principle of complementary energy
for nonlinear elastic cable networks with geometrical nonlinearities. Journal of op-
timization theory and applications, 126(3), 617-641.

194 sciencesconf.org:bioma2018:183720



17. Kmet, S.and Kokorudova, Z. (2006). Nonlinear analytical solution for cable
truss.Journal of engineering mechanics, 132(1), 119-123.

18. Yang, Y. B.and Tsay, J. Y. (2007). Geometric nonlinear analysis of cable struc-
tures with a two-node cable element by generalized displacement control method.
International Journal of Structural Stability and Dynamics, 7(04), 571-588.

19. Such, M., Jimenez-Octavio, J. R., Carnicero, A. and Lopez-Garcia, O. (2009).
An approach based on the catenary equation to deal with static analysis of three
dimensional cable structures. Engineering Structures, 31(9), 2162-2170.

20. Chen, Z. H., Wu, Y. J., Yin, Y. and Shan, C. (2010). Formulation and application of
multi-node sliding cable element for the analysis of Suspen-Dome structures.Finite
elements in analysis and design, 46(9), 743-750.

21. Nuhoglu, A. (2011). Nonlinear analysis of cable systems with point based iterative
procedure. Scientific Research and Essays, 6(6), 1186-1199.

22. Thai, H. T. and Kim, S. E. (2011). Nonlinear static and dynamic analysis of cable
structures. Finite elements in analysis and design, 47(3), 237-246.

23. Toklu, Y. C., Bekdas, G. and Temur, R. (2017). Analysis of cable structures
through energy minimization. Structural Engineering and Mechanics, 62(6), 749-
758.

24. Toklu, Y. C. (2004). Nonlinear analysis of trusses through energy minimiza-
tion.Computers and structures, 82(20), 1581-1589.

25. Toklu, Y.C., Bekda, G. andTemr, R., (2013). Analysis of Trusses by Total Potential
Optimization Method Coupled with Harmony Search, Structural Engineering and
Mechanics, 45(2), 183-189.

26. Toklu, Y. C., Toklu, N. E. (2013). Analysis of structures by Total Potential Op-
timization using Meta-heuristic Algorithms (TPO/MA). In Siarry, P. Heuristics:
Theory and Applications, Nova Science. Chapter 16. pp. 345-374.

27. Temr, R., Trkan, Y. S. and Toklu, Y. C. (2014). Geometrically Nonlinear Analysis
of Trusses Using Particle Swarm Optimization. In Recent Advances in Swarm In-
telligence and Evolutionary Computation (Editor: Xin-She Yang) Springer Series:
Study in Computational Intelligence (SCI). In press

28. Yang, X. S. (2012). Flower pollination algorithm for global optimization. In Un-
conventional Computation and Natural Computation 240-249.

29. Rao, R. V., Savsani, V. J., Vakharia, D. P. (2011). Teachinglearning-based opti-
mization: a novel method for constrained mechanical design optimization problems.
Computer-Aided Design, 43(3), 303-315.

30. Rao, R. (2016). Jaya: A simple and new optimization algorithm for solving con-
strained and unconstrained optimization problems. International Journal of Indus-
trial Engineering Computations, 7(1), 19-34.

195 sciencesconf.org:bioma2018:183720



The Population Factor on Metaheuristic Based
Analyses of Truss Structures

Aylin Ece Kayabekir1, Gebrail Bekdaş1[0000−0002−7327−9810], Sinan Melih
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Abstract. In this study, the population factor was investigated for the
analyses of truss structures. In the methodology, the total potential en-
ergy minimization using metaheuristic algorithms (TPO/MA) was used.
The bioinspired algorithms investigated in the study are Differential Evo-
lution (DE), Particle Swarm Optimization (PSO) and Flower Pollination
Algorithm (FPA). For different number of population, FPA is effective
on the solution and robust comparing to the other classical algorithms.

Keywords: Truss Structures, Total potential energy minimization, Bioin-
spired algorithms.

1 Introduction

Metaheuristic algorithms are generally used in optimization problems. Whereas,
these algorithms can be also used in the analyses instead of classical methods in
engineering. For example, metaheuristic algorithms may be used in finding min-
imum potential energy of a structural system with several degrees of freedoms.
The set of solution of degrees of freedom with the minimum potential energy will
be the true solution because of the equilibrium of the system. By using total po-
tential energy minimization using metaheuristic algorithms (TPO/MA)[1], the
non-linear analyses of truss system can be automatically done while the well-
known finite element method needs to be combined with several methodologies.
In TPO/MA, the parameters and population (n) selection are effective on the
robustness of the method.

2 Methodology

The objective of the methodology is to minimize the total potential energy of the
structural system by generating possible solutions for the nodal displacements
of the structure. The system is at equilibrium at the minimum total potential
energy level. In that case, the solution of the structural system can be found by
considering the second order effects which are the additional responses resulting
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from the deflection of the system. In the methodology, n sets of randomly de-
fined nodal displacements generate the solution matrix. According to algorithm
formulations, these sets are modified according to the corresponding total poten-
tial energy level. In the study, Differential Evolution (DE) [2], Particle Swarm
Optimization (PSO) [3] and Flower Pollination Algorithm (FPA) [4] are adopted
with the minimization of total potential energy problem and the factor of the
population number was investigated in the numerical example.

3 Numerical examples

As a numerical example, the 3-bar plane truss system shown in Fig. 1 is demon-
strated for the investigation of the population number factor. The truss system
is loaded from the node 4. The P loads applied to the node 4 have equal inten-
sity in x (10 kN) and y (-10 kN) direction. The modulus of elasticity; E is 200
GPa for all the members and the equal cross-sectional area of all members is 1
mm2. The number of population is investigated for 2, 3, 5, 10, 15, 20, 30 and 50.
The DE parameters are 1 and 0.5 for the amplitude control parameter (F) and
Crossover Constant (CR), respectively. The PSO learning parameters; α and β
are taken as 1 and the inertia function; (t) are taken as a constant value (0.2).
These parameters are the best tested parameters for the problem. The iterative
analysis process was repeated for 30 independent runs. The analyses are pre-
sented in Tables 1-3 for DE, PSO and FPA, respectively. The tables contain the
minimum total potential energy (TP) value of 30 runs, the average value, the
standard deviation value and the number of iterations to reach the minimum TP
value are shown. The optimum second order analyses results are 3.6320 mm and
-1.5309 mm for the displacements; u4 and v4 which are the nodal displacements
of node 4 in x and y coordinates, respectively. The minimum TP of the system
is -25536.85 kNm.

Fig. 1. 3-bar plane truss structure

4 Discussion and Conclusion

It is clearly seen that DE aims to local optimum values for low population values
and the solution cannot be found if the population value is lower than 10. Also,
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Table 1. Solutions for the 3-bar plane truss (DE)

Population No 2 3 5 10 15 20 30 50

Min. TP (kNm) -17919.8 -25367.1 -25533.93 -25536.85 -25536.85 -25536.85 -25536.85 -25536.85
Av. TP 111509.2 46237.8 -11076.60 -25442.31 -25535.48 -25536.85 -25536.85 -25536.85

Std. dev. 102919.2 72529.9 20579.29 199.05 5.32 0.0005 0 0
Iter. No. 3 4 9 33 84 157 212 249

taking the population value as 10 is not robust for DE because of the big standard
deviation value. The same conclusions can be done for PSO, but it is not the
worst one since the minimum solution is found if the population number is 5
or more. FPA is generally robust and effective except for the case in which the
population value is 2.

Table 2. Solutions for the 3-bar plane truss (PSO)

Population No 2 3 5 10 15 20 30 50

Min. TP (kNm) - 24614.0 -25536.3 -25536.85 -25536.85 -25536.85 -25536.85 -25536.85 -25536.85
Av. TP 88083.2 17459.2 -25527.43 -25536.85 -25536.85 -25536.85 -25536.85 -25536.85

Std. dev. 123874.6 57249.1 39.24 0 0 0 0 0
Iter. No. 34 56 831 1003 882 1099 243 202

Table 3. Solutions for the 3-bar plane truss (FPA)

Population No 2 3 5 10 15 20 30 50

Min. TP (kNm) -25536.8 -25536.85 -25536.85 -25536.85 -25536.85 -25536.85 -25536.85 -25536.85
Av. TP 17544.4 -25536.84 -25536.85 -25536.85 -25536.85 -25536.85 -25536.85 -25536.85

Std. dev. 68746.8 0.02 0 0 0 0 0 0
Iter. No. 272 1345 1195 1086 1079 1019 283 283
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Abstract— Many real-world problems are considered 

optimization problems because of their nature that one or more 

objectives need to be optimized. Such problems state a challenge 

for researchers to design efficient algorithms capable of finding 

the optimal solution with least computational cost. Cultural

Algorithm is considered one of the most evolutionary algorithms 

that uses the knowledge to guide search towards promising 

regions. When applying to real-world optimization problems 

with complex landscape, it suffers from fast convergence and 

stagnation scenarios. This paper presents a hybrid approach of 

an improved version of Cultural Algorithm and an adapted 

Multiple Trajectory Search to solve real-world optimization 

problems, namely iCA-MTS. Three improved knowledge sources 

have been used which are: situational knowledge, normative 

knowledge, and topographic knowledge. A quality function is 

used to control the work between both components: Cultural 

Algorithm and Multiple Trajectory Search. A set of engineering 

design problems is used to test the performance of proposed 

algorithm. Comparative studies show that the new algorithm has 

a superior performance comparing to other several evolutionary 

algorithms.      

Keywords—Real-world problems, Cultural Algorithm, 

Evolutionary Algorithm, Multiple Trajectory Search. 

I.  INTRODUCTION  

Real-world problems have attracted substantial research 
interest. Most of these problems can be expressed as single 
objective global optimization problems. In general, 
optimization problems can be formulated mathematically as 

minimizing the cost function ( ) ( : )
D

f X f    
r

 where  is 

a non-empty and bounded set that represents the domain of the 
decision variable space. The optimization task is to find the 

best parameter vector 
*

X
r

 from a set of available alternatives 
based on solution objectives and some constraints criteria [1]. 

Many evolutionary algorithms have been proposed in the 
literature such as: Genetic Algorithms (GA) [2], Particle 
Swarm Optimization (PSO) [3], Differential Evolution (DE) 
[4], Ant Colony Optimization (ACO) [5], and Cultural 
Algorithms (CA) [6]. When applying to real-world problems, 
many evolutionary algorithms can often get trapped in local 
optimal solution due to complex landscape of these problems. 
Many researchers suggest the solution of this problem by 

developing new enhanced algorithms based on the idea of 
hybridizing with other algorithms or local searches. Compare 
to their constituent algorithms, this mode provides a 
synergistic fashion to develop new algorithm with search 
elements which show more satisfactory performance [7-9].   

Cultural Algorithm is a population-based algorithm which 
uses cultural evolution process to guide evolutionary search. 
The knowledge component is the key difference between this 
algorithm and all other evolutionary algorithms. Recently it 
has been growing interest in developing new improved 
Cultural Algorithms for the solution of different optimization 
problems and real-life applications [10-13]. The idea of 
hybridization is also incorporated in Cultural Algorithm to 
avoid premature convergence and stagnation scenarios. In 
[14], the Cultural Algorithm is hybridized with a recapitulated 
local search. A common knowledge space is used in a multi-
populations scheme to integrate the generated knowledge. 
Among these sub-populations, a knowledge migration with 
less communication cost is employed to lead search in new 
approaches.   

In Cultural Algorithm, the idea of implementing an 
evolutionary algorithm as a population space is well known in 
order to enrich search ability. In [15], the Particle Swarm 
Optimization is used in population space of an improved 
Cultural Algorithm. This combination is used for numerical 
optimization over continuous spaces. An improved PSO has 
also been merged with Cultural Algorithm in [16]. Another 
technique that used the Differential Evolution with Cultural 
Algorithm is introduced in [17]. In this algorithm, the diversity 
of problem solvers have been increased by incorporating 
operations of Differential Evolution in CA evolution. The 
Genetic Algorithm is also hybridized with Cultural algorithm. 
In [18], a constructive knowledge is being extracted from a 
population space of a Genetic Algorithm by using Cultural 
Algorithm. The job shop scheduling problems can be solved 
by employing this algorithm. An indistinguishable approach is 
implemented for real-world optimization in [19]. A novel class 
of hybrid niche Cultural Algorithms is introduced in [10]. In 
this work, three different approaches have been proposed for 
solving engineering applications. 

While the aforementioned examples show the advantages 
of hybridization in Cultural Algorithm, the potential cost is 
also undeniable [10-12]. The first aspect is how to balance the 
component algorithms to satisfy the good balance between 
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exploration and exploitation phases. The second is the extra 
computational resources that may require in the optimization 
engine when there are two or more combined algorithms. In 
this paper, we keep these two aspects in consideration and 
develop new hybrid approach that combines Cultural 
Algorithm and Multiple Trajectory Search. An improved 
version of Cultural Algorithm has been used in this hybrid 
approach. The situational, topographical and normative 
knowledge have been used with a shared knowledge to help 
guiding the search toward the promising regions. In order to 
control synergistic between two algorithms, a quality function 
is applied. This algorithm is introduced for soling real-world 
optimization problems. It can also assist to curb the quantity of 
Function Evaluations (FE) that are needed to solve a problem 
and find an optimal solution as least as good as the best 
published results.  

The remaining sections complete this paper as follows. 

Section 2 briefly introduces Cultural Algorithm and Multiple 

Trajectory Search. In Section 3, the proposed method is 

elaborated. Section 4 describes the real-world optimization 

problems, parameter settings and simulation results. Finally, 

section 5 summarizes the conclusion of this paper.  

II. SCIENTIFIC BACKGROUND

A. Cultural Algorithm 

Cultural Algorithm (CA) has been introduced by Reynolds 

[20]. It is derived in nature from the cultural evolution process 

and consists of two components: belief space and population 

space. In order to regulate the implementation of common 

knowledge for generating new individuals, the use of 

communication channels is essential between the two spaces. 

Five knowledge sources have been introduced in Classical 

Cultural Algorithm which are: topographic knowledge, 

situational knowledge, normative knowledge, domain 

knowledge and history knowledge. These knowledge types are 

residing in the belief space and responsible of guiding 

evolution in the search landscape by accumulating information 

regarding the problem domain and search space. The basic 

pseudo-code of Cultural Algorithm is presented in Fig. 1. 

After initializing the population and belief spaces, the Obj() 

function evaluates the individuals. 

 

Fig. 1. Pseudo-code of the Cultural Algorithm 

After that, The responsibility of Accept() function is to 

choose the finest individuals which are employed by the belief 

space knowledge applying the function Update(). Next, a new 

set of individuals are generated using Influence() function with 

the help of knowledge sources that are chosen using the

roulette wheel selection [20].     

B. Multiple Trajectory Search 

The Multiple Trajectory Search is a kind of global 

optimizer algorithm that utilizes the Simulated Orthogonal 

Array with different step sizes to generate new good solutions 

[21]. The idea behind this algorithm is to move in the 

parameter space using distinct step sizes to change the position 

in each dimension to further good position. Inside Multiple 

Trajectory Search, various local search techniques are 

employed to generate new individuals capable of maneuvering 

search toward different directions. For each local search 

method, two parameters have been used and dynamically 

change in each generation which are Search Range (SR) and 

Test Grade (TG). The search range, SR is used and initially set 

to ( ) / 2Ub Lb where Lb and Ub are the lower and upper 

bounds. The Test Grade, TG is used to select the best local 

search method based on a predicated value in each generation.  

The algorithm starts by initializing M solutions uniformly 

distributed over the search space of the problem being solved 

using the Simulated Orthogonal Array, 
M D

SOA


where D is the 

dimension of problem. After that, in order to generate new 

individuals using local search techniques, a sequence of step 

sizes based on backward and forward movements are 

employed to the original parameters. Three local search 

methods have been introduced in original MTS [21]. The first 

local search method uses the Eq. 1 to generate new offspring. 

If the new offspring is not better than the current individual, 

Eq. 2 is used. In the case the new offspring is better than the 

current one, the TG is updated for local search 1.    
j j

new i
SRx x           (1)

0.5
j j

new i
SRx x            (2) 

The second local search resembles the equations of the 

first one except it focuses on one quarter of the dimensions of 

the current individual. The third local search generates three 

different individuals in an attempt to find new good solution if 

the first local searches failed to update their test grades. The 

three solutions are generated by increasing the current 

dimension by 0.1 and 0.2 and by decreasing it by 0.1. The test 

grade is updated if one of these three solutions is better than 

the current one.      

III. PROPOSED ALGORITHM

In our hybrid approach, an improved Cultural Algorithm is 

used with a modified Multiple Trajectory Search. The

following sub-sections presents the algorithm in details.   

1. Begin

2. Set t=0

3. Initialize belief space, Bt

4. Initialize population space, Pt

5. Repeat

6.    Evaluate Pt using Obj() 

7.    Update Bt using Accept() 

8.    Generate Pt using Influence() 

9.    t=t+1 

10. Select pt from pt-1

11. Until (termination condition met)

12. End

200 sciencesconf.org:bioma2018:183820



A. Improved Cultrual Algorithm 

An enhanced version of Cultural Algorithm is used in our 

hybrid approach. In this version, a modified belief space is 

used in which three improved knowledge sources have been 

used to guide the evolutionary search. These three knowledge 

sources are: Topographical, Situational and Normative 

knowledge sources. In our approach, these knowledge sources 

as described below depict the archive of the finest knowledge 

which will be applied during the optimization process.   

1) Topographical Knowledge source: is the heart of belief

space in Cultural Algorithm in which the cell-based

functional patterns is used [22].  In order to split the

search landscape into divergent cells, the spatial

characteristics are assembled and employed. To keep

track of the best individual, every cell will have the

responsibility. Furthermore the Influence function will

imitate the best-cell to generate new good individuals. In

the original implementation of Topographical knowledge,

the k-d tree in used to implement its structure. In our

approach, to effectively manage memory and time

resources when solving real-world optimization problems

of complex landscape, we set k to 2 where each node can

only have two children. This modification saves extra

resources and simplify the space-partitioning data

structure to utilize the spatial characteristics in an

effective manner. The update process of our topographical

knowledge is presented in Fig. 2 where p_cbh is the parent

cell of the best individual.

Fig. 2. Modified topographical knowledge Source 

2) Situational Knowledge source: is responsible of

accumulating the efficient exemplars during the

evolutionary process. These exemplars will be followed

by newly produced individuals in the Situational

knowledge. As a result, the Situational knowledge guides

the search toward best promising regions by mimicking

the best exemplars in its structure. Fig. 3 shows how the

update process works where the global best solution is

represented as <gbest1, gbest2… gbestD> and D is the

dimension.

Fig. 3. Update process of Situational knowledge 

3) Normative Knowledge source: is responsible of storing

the behavior of individuals in a memory structure by

dealing with promising parameter settings. Using this

knowledge source, it is guaranteed to move in better

ranges or remain in the current situation by just storing

the acceptable behavior of generated individuals. Fig. 4

presents the update process of our Situational Knowledge

source where lbi, ubi are the lower and upper bounds, xi is

the current solution, yi is the generated offspring, Rnd is a

uniform random number generator and mutate(xi) is a

Gaussian distribution generator with a mean of xi.

Fig. 4. Update process of Normative knowledge 

B.  Modified Multiple Trajectory Search 

A cultural-based scheme is used to modify the classical 

multiple trajectory search. In this scheme, the knowledge 

sources of Cultural Algorithm is used instead of simulated 

orthogonal arrays to generate M initial solutions. This 

represents crucial change in original multiple trajectory search 

by utilizing the best knowledge to generate initial search 

agents to better guide search instead of starting from random 

points. Using shared knowledge for this task enables us to 

provide good starter point for multiple trajectory search by 

benefiting from the knowledge to generate better solutions. As 

explained earlier, the original multiple trajectory search uses 

three local search methods. When hybridizing with other 

algorithm, these search methods absorbs extra computations to 

generate one good solution especially when other algorithm is 

strong enough and uses some knowledge. To solve such issue, 

a new search method is introduced and used instead of those

three original methods.  

After generating M initial individuals using knowledge 

sources, the best individual xbest is selected to generate new 

solution using the following equation:  

,

j j

new i best
x x    (3) 

1. Given current solution xi with

lower and upper bounds lb, ub

2. While (i<= D)

3. If xi(lbi, ubi)

4.   yi=rnd(lbi, ubi) 

5.   Else 

6.   yi = mutate(xi) 

7.   End 

8.   i += 1 

9. End

1. While (i<= D)

2.   If xi<gbesti 

3. yi= Rnd(xi, gbesti) 

4.   ElseIf xi>gbesti 

5. yi = Rnd(gbesti, xi) 

6.   Else 

7. yi = mutate(xi) 

8.   End 

9.   i += 1 

10. End

1. If search is progressing

2.   If curr_cell is good Y = mutate(X) 

3.   Else 

4.   Choose another cell from the set 1 ≤ j ≤ s 

5.   Y = mutate(p_cbj) 

6.   End 

7.   Else

8.   If f(X) < f(p_cbh) 

9.  Y = mutate(X) 

10.   Else 

11.  Choose Ct from the upper level cells 

12. Y = mutate(p_cbt) 

13.  End 

14. End

201 sciencesconf.org:bioma2018:183820



Where  is the search range or step size of our search method 

which is denoted as  in our implementation. It is generated as 

Eq. 4 shows. It uses the Euclidean distance between two 

individuals 
1

x and
2

x multiples by 
LRF

rnd which is a linear 

reducing factor chosen randomly within the range [0.02,1]. 

1 2
( , )

LRF
D x x rnd    (4) 

C.     Hybrid Approach 

In order to increase search ability of Cultural Algorithm, a 

hybrid approach that combines the capabilities of an improved 

Cultural Algorithm and a modified Multiple Trajectory search. 

In this hybrid approach, an improved belief space consists of 

three modified knowledge sources have been used which 

explained in Section A. Due to their well-known performance 

these aforementioned three knowledge sources were chosen 

[22, 23]. In order to control communication between Cultural 

Algorithm and Multiple Trajectory Search, a quality function 

is employed. This quality function is responsible of choosing 

the knowledge sources that will be incorporating in generating 

M initial solutions for our modified Multiple Trajectory 

Search. The selection for knowledge source for this task is 

based on its success of the previous generations. Initially, the 

probability of selecting a knowledge source 
i

t

ks
p  at t=0 is set 

to 1 / N where N is the number of used knowledge sources 

which is 3 in our case.  

For each knowledge source 
i

ks , the number of successful 

individuals are reordered in an archive which is denoted by 
1
( )

t

s i
n ks


while the number of other individuals which are 

failed in optimization process is recorded in another archive as 
1
( )

t

f i
n ks


. Based on the sizes of used archives, the 

probabilities of choosing the various knowledge sources for a 

specific individual are updated as it is stated in the following 

equation shows: 
1

1 1

( )
( )

( ) ( )

t

t s i

i t t

s i f i

n ks
p ks

n ks n ks



 



 (5) 

In our hybrid approach, the Cultural Algorithm is started by 

initializing a set of individuals in the population space which 

is uniformly distributed over search range of a problem. After 

that, in order to generate good solutions, the adapted belief 

space with the improved knowledge sources are applied which 

also got benefited by the shared knowledge. Next, the 

amended multiple trajectory search is performed to help 

generating new search argents that help guide search toward 

promising regions. The M initial solutions are generated using 

the three knowledge sources based on their successes 

probabilities as Eq. 5 presented. Next, our local search method 

inside Multiple Trajectory Search is used to generate new 

good solutions as Eq. 4 shows. 
1

x and
2

x in our case represents 

the best individual of population space of our Cultural

Algorithm and best individual of M generated  individuals, 

xbest respectively. If new individual 
new

x is better than the best 

individual of Cultural Algorithm, the replacement is occurred. 

Otherwise, for the next generation the existing supreme 

individual will be preserved. 

IV. EXPERIMENTS AND RESULTS

In this section, a set of real-world optimization problems are 

being used to validate the efficiency of the suggested 

algorithm. In the experiments that is described in this section, 

the results of several other well-known CA-algorithms as well 

as other state-of-the-art algorithms are being compared with 

the performance of the iCA-MTS. An Intel (R) Core i7 

2720QM processor @ 2.20 GHz, and 8 GB RAM operating on 

Windows 7 professional is used to perform the experiments 

illustrated in this paper. Java 1.8 is used to implement our 

proposed algorithm. For each real-world problem, a total of 50 

independent runs were performed. NP which denotes the 

population size is decided at 50 individuals. The number of M 

solutions is required by our adapted Multiple Trajectory 

Search is set to 5. The linear reducing factor 
LRF

rnd  used in 

Eq. 4 is randomly chosen within the interval [0.02, 1]. 

When dealing with real-world problems, it is crucial to 

know the manner of handling constraints. The Constraint 

handling techniques that are proposed in the literature can be 

either techniques which preserve feasibility or penalty-based 

techniques. Moreover, it can be hybrid approaches of both 

techniques [24, 25]. An adaptive penalty-based technique 

based on our previous work is implemented in this suggested 

algorithm [10].  

A. Tension/Compression Spring 

The tension/compression spring considers one of the 

challenging mechanical design problem. The optimization task 

is to minimize the weight of a tension/compression spring and 

limits its outside diameter [26]. This problem is faced with 

several limitations which are minimum deflection, surge 

frequency, shear stress and restrictions on design variables. 

This problem consists of three design variables which are: the 

wire diameter 
1

( ),d x the mean coil diameter 
2

( ),D x and 

the number of active coils
3

( )N x . The schema of the spring 

is given in Fig. 5. The mathematical representation of this 

problem can be expressed as: 
2 2

1 2 3 1 2

3

2 3

1 4

1

2

2 1 2

2 3 4 2

2 1 1 1

( ) 2 ,

subject to,

( ) 1 0,
71785

4 1
( )
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12566( ) 5108
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x
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Fig. 5. Schema for the tension/compression string [26] 

Table 1 presents the optimal design variables, constraints, 

optimal value, and required number of function evaluations 

(FEs) to reach the optimal value, for iCA-MTS and other 

reported values in the literature. Table 2 shows the statistical 

simulation results over 50 independent runs. The results show 

that the proposed algorithm is able to generate high quality 

solutions comparing to the state of the art methods. The best 

optimal value for iCA-MTS was 0.012665 using 4809 

function evaluations which is better than other approaches.      

Table 1  

Comparison of the solution quality for tension/compression string design 

problem 

Methods 
Optimal design variables 

x1 x2 x3 fcost FEs 

Coello and Montes [26] 0.051989 0.363965 10.890522 0.012681 N.A 

Gao et al. [27] 0.055071 0.445656 7.913870 0.012989 10,000 

Cagnina et al. [28] 0.051583 0.354190 11.438675 0.012665 24,000 

Jaberipour & Khorram 

IPHS [29] 

0.051860 0.360857 11.050339 0.012665798 200,000 

Tomassetti [30] 0.051644 0.355632 11.35304 0.012665 10,000 

He and Wang [31] 0.051728 0.357644 11.244543 0.0126747 N.A 

Kaveh & Talatahari 

2011 [32] 

0.051432 0.35106 11.60979 0.0126385 4,000 

Kaveh & Talatahari 

2010 [33] 

0.051744 0.35832 11.165704 0.126384 N.A 

iCA-MTS (present 

study) 

0.051795 0.359264 11.14128 0.012665 4809 

* N.A: Not Available

Table 2  

Statistical analysis for the solution quality tests for the tension/compression 

string design problem 

Methods Best Worst Mean Std 

Coello and Montes [26] 0.012681 0.012973 0.0127420 5.9000E-05 

Gao et al. [27] 0.012989 N.A N.A N.A 

Cagnina et al. [28] 0.012665 N.A N.A N.A 

Jaberipour & Khorram 

IPHS [29] 

0.012665798 N.A N.A N.A 

Tomassetti [30] 0.012665 N.A N.A N.A 

He and Wang [31] 0.0126747 0.012730 0.012924 5.1985E-05 

Kaveh & Talatahari 

2011 [32] 

0.0126385 0.0130125 0.0127504 3.948E-05 

Kaveh & Talatahari 

2010 [33] 

0.126384 0.013626 0.012852 8.3564E-05 

iCA-MTS (present 

study) 

0.012665 0.0129900 0.0127110 2.9097E-05 

* N.A: Not Available

B.     Welded Beam Design 

One of the popular practical engineering optimization 

design problem is the Welded/beam design [26]. In this 

problem, four design variables are introduced which are: 

1
( )h x ,

2
( )l x ,

3
( )t x , and 

4
( )b x . The structure of 

welded beam is shown in Fig. 6. 

Fig. 6. Structure of the welded beam [26] 

This structure consists of two beams A and B and a weld 

that is needed to clamp between them. The objective is to 

locate a feasible solution vector of dimensions h, l, t, and b to 

convey a certain load (P) while sustaining the minimum total 

fabrication cost. The objective function for this problem is 

mainly the total fabricating cost, comprised of the welding 

labor, set-up, and material costs. This problem can be

formulated mathematically as follows: 
2

1 2 3 4 2

1 max

2 max

3 1 4

2

4 1 3 4 2

5 1

6 max

7

( ) 1.10471x 0.04811x (14.0 )
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Table 3 

Comparison of the solution quality for the welded beam design problem 

Methods 

Optimal design variables 

x1 x2 x3 x4 fcost FEs 
Gao et al. [27] 0.299005 2.744191 7.502979 0.311244 2.0932 10,000 

Tomassetti [30] 0.205729 3.470489 9. 036624 0.205730 1.7248 10,000 

Jaberipour & Khorram IPHS  [29] 0.205730 3.470490 9.036620 0.205730 1.7248 65,300 

Coello &Montes [26] 0.205986 3.471328 9.020224 0.206480 1.728226 N.A 

He and Wang [31] 0.202369 3.544214 9.047210 0.205723 1.728024 N.A 

Kaveh & Talatahari 2011 [32] 0.207301 3.435699 9.041934 0.205714 1.723377 4,000 

Kaveh & Talatahari 2010 [33] 0.205820 3.468109 9.038024 0.205723 1.724866 N.A 

Gandomi et al. [28] 0.2015 3.562 9.0414 0.2057 1.7312065 50,000 

iCA-MTS (present study) 0.205673 3.471676 9.036692 0.205729 1.7249 3,721 

2 6

3 4

3

2

6 6

max max max

4.013
36

( ) (1 ),
2 4
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The comparison of the solution quality is shown in Table 

3 including the results for other state-of-the-art algorithms and 

the statistical simulation results over 50 independent runs are 

summarized in Table 4. The results show that the proposed 

algorithm generates a function value equals to 1.7249 using 

3721 function evaluations, which is better than other 

approaches.    

Table 4  

Statistical results of differnt methods for the welded beam design problem 

Methods Best Worst Mean Std 
Gao et al. [27] 2.0932 N.A N.A N.A 

Tomassetti [30] 1.7248 N.A N.A N.A 

Jaberipour & Khorram IPHS  

[29] 
1.7248 N.A N.A N.A 

Coello &Montes [26] 1.728226 1.792654 1.993408 0.074713 

He and Wang [31] 1.728024 1.748831 1.782143 0.012926 

Kaveh & Talatahari 2011 

[32] 

1.723377 1.762567 1.743454 0.007356 

Kaveh & Talatahari 2010 

[33] 

1.724866 1.759479 1.739654 0.008064 

Gandomi et al. [28] 1.7312065 2.3455793 1.8786560 0.2677989 

iCA-MTS (present study) 1.7249 1.7596205 1.7368892 3.328E-04 

* N.A: Not Available

The design of this problem is presented in Fig. 7 which has 

four integer variables denoted as Ti which defines the number 

of teeth in the of ith gear wheel. The objective function as 

expressed belwo requires the teeth numbers of wheel that

generate a gear ratio that reaches to 1/6.931.   

.1
( , , , )

6.931 .

b d

a b d f

a f

T T
f T T T T

T T
 
 
 
 

         (8) 

Where , , ,
a b d f

T T T T are integer variables between 12 and 60. 

Tables 5 and 6 show the best results for the best objective 

values obtained by iCA-MTS algorithm over 50 independent 

runs and along with those for other algorithms from the 

literature. The results show that the proposed algorithm was 

able to generate a gear ratio equals to 0.1442 using less 

number of function evaluations compared to other approaches.  

Fig. 7. Structure of the gear train [34] 

C. Gear train design 

The Gear train design is a discrete engineering 

optimization problem introduced by Sandgran [34]. The gear 

ratio of a compound gear train is the main objective that can 

be expressed mathematically as shown below: 

Angular velocity of the output shaft

Angular velocity of the input shaft
Gear ratio 

Table 5  
Optimal results of differnt methods for the gear train design problem 

Methods Ta Tb Td Tf 

Deb & Goyal [34] 33 14 17 50 

Loh & Papalambros [35] 42 16 19 50 

Parsopoulos & Vrahatis [36] 43 16 19 49 

Gandomi et al.  [37] 43 16 19 49 

Gandomi et al.[38 ] 49 19 16 43 

iCA-MTS (present study) 43 19 16 49 

* N.A: Not Available
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Table 6  
Optimal results of differnt methods for the gear train design problem 

Methods Gear ratio fmin FEs 

Deb & Goyal [34] 0.1442 1.362E-09 N.A 

Loh & Papalambros [35] 0.1447 0.23E-06 N.A 

Parsopoulos & Vrahatis [36] 0.1442 2.701E-12 100,000 

Gandomi et al.  [37] 0.1442 2.701E-12 5,000 

Gandomi et al.[38 ] 0.1442 2.701E-12 2,000  

iCA-MTS (present study) 0.1442 2.701E-12 1,500 

* N.A: Not Available

V. CONCLUSION 

Solving real-life optimization problems is an intriguing 

task due to the fact that many real-life applications can be 

formulated as optimization problems. The evolutionary 

algorithms are bio-inspired algorithms which proofs its 

efficiency a powerful optimization tool to solve diverse set of 

optimization problems. Among these algorithms, the cultural 

algorithm is the only evolutionary algorithm which uses the 

knowledge source explicitly to guide the evolutionary search. 

This paper introduces an improved cultural algorithm with a 

multiple trajectory search to solve interesting real-life 

optimization problems. The algorithm uses three knowledge 

sources which are: situational knowledge, normative 

knowledge, and topographic knowledge with a good quality 

function to control the interaction and number of followers 

between them. The proposed algorithm namely, iCA-MTS, is 

tested on engineering problems which are: 

tension/compression string, welded beam and gear train design 

problems. The simulation results show that by comparing 

other state-of-the-art algorithms, the proposed algorithm is 

able to generate high quality solutions. 
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Abstract. Deep neural networks are constructed that are able to par-
tially solve a protein structure optimization problem. The networks are
trained using reinforcement learning approach so that free energy of pre-
dicted protein structure is minimized. Free energy of a protein structure
is calculated using generalized three-dimensional AB off-lattice protein
model. This methodology can be applied to other classes of optimization
problems and represents a step toward automatic heuristic construction
using deep neural networks. Trained networks can be used to construct
better initial populations for optimization. It is shown that differential
evolution applied to protein structure optimization problem converges to
better solutions when initial population is constructed in this way.

Keywords: protein folding, heuristic, deep learning, differential evolu-
tion

1 Introduction

Prediction of protein structure from the sequence of its residues is a hard opti-
mization problem. All proteins are endowed with a primary structure consisting
of the chain of amino acids. Folding of this chain results into so-called 3D pro-
tein structure. The biological functional role of the protein is strictly dependent
on the protein 3D structure. Knowledge of a proteins structure provides insight
into how it can interact with other proteins, DNA/RNA, and small molecules.
It are these interactions which define the proteins function and biological role
in an organism. Thus, protein structure and structural feature prediction is a
fundamental area of computational biology. Its importance is exacerbated by
large amounts of sequence data coming from genomics projects and the fact
that experimentally determining protein structures remains expensive and time
consuming [1].

Over the last decades a lot of effort have been invested in reducing the com-
putational cost of calculating the 3D structures of proteins. One way to decrease
the computational cost is the introduction of approximate models for the cal-
culation of protein’s free energy which is minimal for appropriate 3D structure.
Because the computation of free energy is less costly, optimization that finds
the right structure is also less costly to preform. Examples of such approximate
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models include models using a cubic lattice [2] and AB type models [3]. Another
way to speed up the optimization process is to make optimization more efficient,
so that less free energy evaluations are needed. This resulted in development of
heuristics that are tailored specifically for this optimization problem. Since pro-
tein folding process is in nature guided only by the physical laws, optimization
methods were devised that include principles from statistical physics. Heuristics
from this category include annealing contour Monte Carlo [4] and conformational
space annealing [5]. Another approach to developing a specialized optimization
algorithm is to modify known metaheuristics such as artificial bee colony [6] or
evolutionary algorithm [7].

A different approach to prediction of protein 3D structure is the use of ma-
chine learning. Here the prediction of 3D structure is based only on features
directly calculated from the sequence of amino acids. There is no optimization
performed during prediction. The structure is calculated simply by applying the
model. Optimization is used only during the model training, when appropriate
model is searched for. Currently, deep neural networks (DNNs) are the most
widely used models for this problem. Properly trained DNNs are very success-
ful at predicting protein’s secondary structure (≈ 80% accuracy) [8] and its
disordered regions (≈ 90% accuracy) [9]. However, full 3D structure prediction
is much less accurate (≈ 20% accuracy) [10]. DNN models are usually trained
using supervised learning where experimentally acquired 3D structures of pro-
teins are used as training examples. Advantage of this approach is that protein’s
free energy does not need to be calculated. But on the other hand, by using
only experimental data one is limited to possibly insufficient amount of training
examples to properly train DNN.

In this paper a different approach to DNN training is presented and used in
which explicit training examples are not needed. Instead, the free energy of a
protein is used to provide information about the quality of predicted solutions.
This is possible because this problem can be interpreted as an optimization
problem or a prediction problem. This allows the combination of both views
to generate a new method for addressing the protein structure problem. In this
regard such methodology can be applied to any optimization problem to generate
DNNs able to predict a solution of an optimization problem. In other words,
given a class of optimization problems one can construct a DNN that represents
extremely fast heuristic specially designed for this class of optimization problems.
This is a step toward automatic heuristic generation.

2 Deep neural network as an optimization algorithm

Optimization problems are often solved using approximate algorithms (heuris-
tics) that are tailored for a specific class of problems. For example, there are
specific heuristics that work well for vehicle routing [11], production scheduling
[12], protein folding [13] and so on. Heuristics are especially useful if similar
problems need to be solved over and over again. In such cases it is sensible to
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develop specialized optimization procedures which are optimized for that specific
class of problems.

In this section a methodology is presented where DNNs are trained in a
way that they are able to approximately solve an optimization problem that
belongs to a given class of problems. Such class of optimization problems can be
represented with a fitness function f with two inputs.

f : S,X → R
fs(x) = min.

(1)

Set S holds all possible optimization problems in the class, while set X holds all
possible candidate solutions for that class of problems. For example, in case f
represents a class of production scheduling problems, s encodes the orders that
need to be fulfilled and x encodes the production schedule.

Given function f , it is possible to define a function g that takes a problem
specification s as an input and returns the position xoptimal

s where function fs
has a global minimum.

g : S → X
g(s) = arg min

x∈X
fs(x) = xoptimal

s
(2)

In other words, g(s) is a solution of optimization problem fs(x) = min. Calcu-
lation of function g is in general intractable. But it might be possible to find a
model that approximates g to some degree. One aim of this paper is to find out
whether a trained DNN is able to approximate g. It is important to note that the
input and output of DNN are traditionally floating point numbers. Therefore, s
and x should be encoded as vectors of floating point numbers. Even for discrete
s and x it is usually possible to find such an encoding.

It is known that a neural network can approximate arbitrary function to an
arbitrary precision [14]. So g can be approximated well using DNN, however it
is unknown how large such a network should be and whether it is possible to
find it using known training techniques. If DNN could be trained to approximate
g, such DNN can preform partial optimization extremely quickly. While DNN
training is known to be resource intensive, prediction is usually not.

Training DNN to approximate g is also an optimization problem, however
optimization landscape of DNN training is not similar to fs landscape. DNN
parameters encode a strategy for predicting xoptimal

s from s, so optimization is
not performed on a single problem encoded by s, but for all possible s at once.
Also DNN optimization landscape has particular properties, like the fact that
saddle points are exponentially more common compared to local minima [15].
Therefore, a suitable optimization method that takes those specific properties
into account should be used for training them. Currently, stochastic gradient
descent (SGD) is the prevalent and very successful approach to DNN training
[16].
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2.1 Supervised learning approach

DNN can be trained to approximate g using supervised learning. Let ĝ(s) be the
output of DNN when s is its input. In supervised learning pairs (si, x

optimal
si ) are

provided and DNN error is minimized using SGD so that

J =
∑

i

∥∥ĝ(si)− xoptimal
si

∥∥ = min. (3)

Since xoptimal
s is in general unknown, its best approximation has to be used which

results to nonideal DNN model. So xoptimal
si need to acquired using external

optimization algorithms. In order to prevent DNN overfitting it is necessary to
provide a large amount of training examples, i.e. much more than the number
of DNN parameters. Therefore, such approach is extremely resource intensive.

2.2 Reinforcement learning approach

Another approach to DNN training is reinforcement learning. In this case func-
tions fs are used to calculate the error of DNN. DNN is trained so that

E =
∑

i

fsi(ĝ(si)) = min. (4)

In reinforcement learning terminology, E can be understood as a penalty that
needs to be minimized. In this case xoptimal

si are not needed and so no exter-
nal optimization is required. The downside is that SGD can not be applied as
simply as with supervised learning. Error function J from equation (3) can be
easily differentiated with respect to DNN parameters using backpropagation.
But penalty E from equation (4) also includes application of fs. This makes the
calculation of the gradient difficult and different methods have been introduced
by deep reinforcement learning community to mend this problem.

In this paper an adapted version of deterministic policy gradient method [17]
is used. This method uses a differentiable model called a critic that approximates
function f from equation (4). The derivative of E can then be approximately
calculated using the derivative of the critic by applying the chain rule. Our
adaptation of this method is to not model f with a critic but instead use f
directly. In order to calculate derivative of E in this scope, the derivative∇xfs(x)
is required.

Fortunately, derivation of fs can also be preformed using backpropagation
principles, i.e. applying chain rule coupled with dynamic programming. There
are good libraries that can preform such automatic differentiation, for example
theano, TensorFlow and CNTK. In this paper theano was used to write ex-
pressions for the calculation of E. These expressions are then transformed to a
computational graph for calculation of E which can be used to build computa-
tional graph for gradient calculation ∇E using the chain rule. In this respect
procedure is returned for analytical gradient calculation ∇E without any assis-
tance from the user. Computational graphs for E and ∇E calculation can be
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compiled to C++, CUDA or OpenCL which brings multi processor support and can
easily be accelerated on GPGPU or even FPGA [18]. Therefore, use of theano
is beneficial even if just calculation of E is needed.

Therefore, by using theano DNN can be trained using SGD so that E from
equation (4) is minimized. Great advantage of this approach is an unlimited
amount of training examples si which can be drawn from desired distribution
over si. This generation of training examples is extremely cheap compared to
supervised learning approach where training examples need to be generated by
optimization algorithm or acquired by experimental measurement.

3 Generalized three-dimensional AB off-lattice protein
model

AB off-lattice model has been widely used to describe the protein secondary
structure folding process for decades [3]. The off-lattice protein model was ini-
tially developed to consider 2D folding problems and was extended to deal with
3D scenarios where additional torsional energy contributions of each bond are
taken into account [19]. According to the AB off-lattice model, the main driving
forces that contribute to protein structure formulation are the hydrophilic and
hydrophobic interactions.

The protein chain is modeled as a vector s where each component si specifies
the hydrophilicity of amino acid at the site i. The distance of two neighboring
amino acids is set to one (di,i+1=1). Under this model free energy G is calculated
as

G(u, d) =
1

4

n−2∑

i=1

(1− ui · ui+1) + 4

n−2∑

i=1

n∑

j=i+2

(
d−12ij − C(si, sj)d

−6
ij

)
, (5)

where ui is a vector from amino acid on site i to amino acid on site i+ 1 and dij
is a distance between amino acids on site i and j (see Fig. 1). The interaction
between two amino acids is specified by a function

C(si, sj) =
1

8
(1 + si + sj + 5sisj) . (6)

Structure of a protein of length n can be encoded using angles θi and ϕi

that tell how vectors ui are oriented in space (see Fig. 2). Therefore, a protein
structure of length n is fully determined by

x = (θ2, . . . , θn−1, ϕ3, . . . , ϕn−1). (7)

Use of this encoding reduces the dimensionality of search space and allows us
to automatically fullfill the constraint ‖ui‖ = 1. The values ui and dij that are
needed for free energy calculation can be calculated from x in the following way

ui = (cos θi sinϕi, sin θi sinϕi, cosϕi) (8)

ri+1 = ri + ui (9)

dij = ‖ri − rj‖. (10)
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Fig. 1: Visualization of direction vec-
tors ui and distances dij on a protein
with three amino acids.
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Fig. 2: Visualization of angles θi and
ϕi from equation (7) that determine
the direction of vectors ui.

The first two amino acids in a sequence are fixed to specific coordinates and the
third one is constrained to xy-plane.

r1 = (0, 0, 0) (11)

r2 = (1, 0, 0) (12)

ϕ2 =
π

2
(13)

By this choice, rotational symmetry of the model is eliminated.
In protein structure optimization problem we want to find a structure of a

protein that minimizes the free energy G. Therefore, given a protein defined
with s, we want to find x that determines the structure of that protein. So the
problem class is defined by a function

fs(x) = G(u(x), d(x)) = min. (14)

Traditionally si = ±1, where hydrophobic amino acid has si = −1 and
hydrophilic si = 1. In this regard quantity si tells how hydrophilic an amino acid
is. However, this paper uses a generalization of this model where si ∈ R. One
reason for this choice is the fact that amino acids in nature are not hydrophilic
to the same degree [20]. Some may attract or repel water more than others.
Also hydrophilicity changes with temperature [21] which allows one to use this
generalized model to study how protein structure changes with temperature.
Use of generalized model is also beneficial with regard to DNN training because
this brings a richer set of training examples and makes the training landscape
smoother.

4 Experiments

In this section DNN training procedure using reinforcement learning is presented
and how solutions predicted by DNNs were used as initial population of differ-
ential evolution (DE) algorithm. A variant of SGD called Adam [22] was used
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and gradient of E was used to guide the training. The calculation of ∇E was
calculated using theano library.

E =
B∑

i=1

fsi(ĝ(si)) (15)

In each step of Adam algorithm a batch of proteins si of random length was
randomly selected. Distribution over length was uniform and over hydrophilicity
a mixture of two Gaussians with mean at ±1 and standard deviation 0.15. Based
on the selected si calculation of E and ∇E was done by theano. The number
of sampled proteins for E and ∇E calculation is called a batch size B. The
training is more stochastic if B is low and becomes more deterministic if B is
high. By experimenting with different batch sizes a good balance between speed
and accuracy was found at B = 512.

Stated more informally, in each step, DNN tries to solve 512 random protein
optimization problems and gets updated in direction that would improve its
solving capabilities for those 512 proteins. Because DNN gets a different batch
of random proteins in each step, it converges to a state that is able to solve all
protein optimization problems equally well. Picking training batches randomly
also ensures that DNN can not overfit since duplicates in the training data are
extremely unlikely. Therefore, the training error of DNN is not a biased estimate
of its accuracy and validation set is not needed.

A DNN structure was chosen that can take proteins with up to n = 100 amino
acids. To allow prediction on smaller proteins zero padding was used. Example
of small scale DNN is shown in Fig. 3. DNNs with different number of hidden
layers was trained in order to quantify how DNN depth influences the accuracy.
In all cases the width of hidden layers was chosen to be 2n = 200. Rectified
linear units were used as activation functions on hidden layers and tanh on the
output layer to ensure that θi, ϕi ∈ [−π, π].

s1

s2

s3

s4

s5

0
��HHϕ3

ϕ2

ϕ1

��@@θ4

θ3

θ2

θ1

Fig. 3: Small scale example of how DNN receives the protein specification and how its
output is interpreted. If a protein is shorter than DNN input layer, zero is placed on
sites where there are no amino acids. In this case some angles from the output are
discarded (crossed out outputs).
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Before training, initial DNN weights need to be set. Initial weights were
generated randomly using Glorot initialization [23]. However, if the magnitude
of initial weights is to large, it can happen that initial DNN predicts very densely
packed structures which causes a very large gradient due to d−12ij repulsive term
in free energy. This causes an unstable gradient descent. Therefore, a prefactor
wi was added to initialization and DNN models with w1 = 0.1 and w2 = 1.0 was
trained.

To avoid unstable gradient descent the predictions of initial DNN should
be unfolded protein structures. This, however, produces another problem. The
first summand in equation (5) forces proteins to be unfolded which means that
unfolded structure is a local minimum that is common to all proteins. To avoid
getting stuck in this common local minimum the first summand in equation (5)
was simply not included in the calculation of free energy at the beginning of
training. When DNN predicted structures began to fold, the previously ignored
summand was gradually added during training. In the last stage of training the
full version of free energy was used.

During DNN training it can happen that for some si in the batch DNN
predicts a structure where two amino acids are very close to each other. A
repulsive interaction causes the gradient ∇E to be very large for the entire
batch. In the next step of gradient descent the DNN is thrown away from a
possibly good region. Such events might be rare, but can severely disturb the
progress of training. To mitigate the effect of such events, gradient norm clipping
can be used. In other words, if the gradient length exceeds a given threshold,
the gradient is clipped so that its length is equal to the threshold.

Solutions predicted by DNNs might be a good initial population for opti-
mization. To test whether this is true protein structure optimization using DE
was implemented. DE was shown to be the best known optimization method for
this problem [7]. Specifications of implemented DE algorithm was taken from
[7], but without parameter control. DE type was best/1/bin, population size
was 100, mutation with dithering was employed with mutation constant taken
between 0.1 and 1 and recombination constant was 0.9. DE was run 30 times for
three proteins found in nature (1CB3, 1CRN and 2EWH) with random initial
population and with initial population where 50% of candidates were predicted
by DNNs.

5 Results

To measure how good a candidate solution is, we use free energy G of the protein.
In case of comparing solutions gotten by DE, this is a sound measure from the
point of view of statistical physics. That is, the protein is most likely to be
in states with low free energy. In ideal case one could check if the solution is
equivalent to the native structure, but because global minima of this protein
model are unknown this is not possible. To evaluate the performance of DNN,
training error is used. It is equivalent to validation error and defined as a mean
of free energy values predicted by DNN for a batch of random proteins. The
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variance of this error measure is very low because the batch size B = 512 is
large.

The training error of DNNs depends of the number of layers. This dependence
is usually monotonically decreasing [16], but for this problem this is not the case
(see Fig. 4). This can be attributed to the sensitivity of training to selection of
initial DNN weights. DNNs were initialized using random matrices. Therefore,
the magnitude of DNN output is exponentially dependent of the number of
layers. Since initial weights have small components (� 1), this means that initial
DNNs with small number of layers predict very folded structures, while initial
DNNs with high number of layers predict practically straight structures. Fig. 4
shows that initial DNN predictions should not be very folded nor very straight.
Best models are somewhere in between.

The most accurate DNN models have three layers. Given that DNNs are able
to partially solve an optimization problem this is a surprisingly shallow DNN
architecture. Free energy of structures predicted by DNNs and by DE is shown
in Table 1. It was found that gradient norm clipping is very beneficial for DNN
training. Fig. 5 shows the progress of DNN training with and without the use of
gradient norm clipping. Occurrence of very high gradients is rare, however they
substantially alter the progress of DNN training.

Using structures predicted by DNN in initial population of DE was found to
be beneficial. When using predicted initial population, DE converges to lower
values of free energy (see Fig. 6). But the convergence is slightly less rapid
for predicted population which could indicate that the population is actually
more diverse. On the other hand, DE progresses are less dispersed among runs
which means that less runs are needed to find a satisfactory solution. In case
of 1CB3 protein the predicted structures are in fact so good that all DE runs
converge to the best known solution in just 100 generations. For larger proteins
the predicted solution are not as good, however the DE performs considerably
better when using the predicted population.

6 Conclusion and future work

In this paper it is shown that deep neural networks can be trained to partially
solve optimization problems belonging to a given class. The networks can be
successfully trained using reinforcement learning method by knowing only the
fitness function of the class of optimization problems. This is shown for the
class of protein structure optimization problems. The predicted solutions were
found to be good initial points for further optimization. Such trained networks
can be used to acquire moderately good solutions of optimization problem when
solution is needed very quickly. Therefore, the method is suitable for optimization
problems that need to be solved repeatedly and is a step towards automatic
heuristic construction.

For future work it should be possible to extend the method to combinatorial
optimization problem where unified methodology should be further developed.
The procedure of finding the best architecture of deep neural network could be
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Fig. 4: Training error of DNNs with respect to the number of hidden layers for two
different magnitudes of initial DNN weights. Full line is the mean error of models,
shaded area shows the range of error for central 66% of the models and the dashed line
is the error of the best model.

Table 1: Free energy calculated for three proteins found in nature by using structures
predicted by DNN and by DE.

protein length best DNN mean DE best DE

1CB3 13 −4.6235 −2.1513 −6.7700
1CRN 46 −42.765 −64.948 −79.906
2EWH 98 −65.163 −148.32 −170.47
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Fig. 5: DNN error during training via SGD. The upper plot shows the progress of usual
SGD procedure, while the lower plot shows SGD progress when gradient norm has a
predefined upper bound by using gradient norm clipping.
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over all runs, shaded area shows the range of central 66% of runs and the dashed line
shows the best run.

more automated so that depth and width of the network is automatically found.
The same goes for the training specification. Another opportunity for future
work is to combine supervised learning approach with reinforcement learning
approach so that the training is guided by both approaches simultaneously.
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Abstract. Swarm Robotics are widely conceived as the development of new
computationally efficient tools and techniques aimed at easing and enhancing
the coordination of multiple robots towards collaboratively accomplishing a cer-
tain mission or task. Among the different criteria under which the performance
of Swarm Robotics can be gauged, energy efficiency and battery lifetime have
played a major role in the literature. However, technological advances favoring
power transfer among robots have unleashed new paradigms related to the opti-
mization of the battery consumption considering it as a resource shared by the
entire swarm. This work focuses on this context by elaborating on a routing prob-
lem for collaborative exploration in Swarm Robotics, where a subset of robots
is equipped with battery recharging functionalities. Formulated as a bi-objective
optimization problem, the quality of routes is measured in terms of the Pareto
trade-off between the predicted area explored by robots and the risk of battery
outage in the swarm. To efficiently balance these conflicting two objectives, a
bio-inspired evolutionary solver is adopted and put to practice over a realistic
experimental setup implemented in the VREP simulation framework. Obtained
results elucidate the practicability of the proposed scheme, and suggest future
research leveraging power transfer capabilities over the swarm.

Keywords: Swarm Robotics, battery recharging, routing, NSGAII.

1 Introduction
Robotics have evolved dramatically over the years to feature unprecedented levels of
intelligence, resulting in an ever-growing number of scenarios benefiting from their
widespread application to accomplish complex missions, e.g. structural health moni-
toring, oil and gas industry, manufacturing, disaster management, precision agriculture
and logistics, among many others. Providing robots with smart sensing, communication
and organization functionalities allows them to capture information, operate, reason and
infer knowledge from the environment in a collaborative manner. Research aimed at
enhancing such functionalities by embracing elements from Artificial Intelligence and
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Distributed Computing has coined the so-called Swarm Robotics concept, which refers
to the deployment of a set of robots that collaborate with each other so as to collectively
perform a mission in a computationally efficient fashion [1, 2].

In general, Swarm Robotics may rely on several key technologies to attain higher
levels of autonomy, optimized operation and self-organization. Unfortunately, it is of-
ten the limited battery lifetime of robots not only what restricts most the autonomy of
the swarm, but also what puts at risk the feasibility of complex missions where robots
operate without any human intervention, as in e.g. the exploration of collapsed infras-
tructures after a massive disaster [3] or the structural assessment of undersea drilling
equipment [4]. Despite notable advances in energy efficient robot mechanics, the bat-
tery capacity poses severe operational constraints to Swarm Robotics, to the point of
jeopardizing their potential use in complex endeavors.

To overcome this issue, many research efforts have been devoted towards augment-
ing the power capacity of robot batteries, either by proposing new materials and chem-
ical components or by deriving new mechanical improvements that extend further their
lifetime by virtue of a lower power consumption [5]. For this same purpose, the com-
munity has also focused its attention towards the consideration of the aggregate battery
power of the entire robotic swam as a whole, an unique resource whose management is
to be optimized globally over all robots rather than locally. This approach grounds on
advances in wireless/mobile robotic charging [6] and the deployment of mobile charg-
ing stations in the swarm [7], which can be exploited as a resource to actively locate
and replenish the battery of other robots. This research topic has been very active in this
regard, as evinced by the short literature review provided in what follows.

1.1 Related Work

A remarkable amount of interesting studies has been published in the last decade fo-
cused in power charging and battery consumption of swarm robots. Haek et al. dis-
cussed in [8] the importance of swarm robustness, defining this concept as the ability
of the robotic swarm to perform a complex task avoiding the total drainage of their bat-
teries. In this work authors present a solution to allow robots to robustly achieve their
assigned tasks, which mainly consists of the use of power stations or power banks. In
[9], a collective energy distribution system is proposed for a dust cleaning swarm of
robots. Authors of this study explore the concept of trophallaxis, previously introduced
in [10], which refers to individual robots donating an amount of their own energy re-
serve to other robots of the swarm. This same concept of altruistic behavior is explored
in [11], materializing the idea in a specific robot architecture called CISSBot. Apart
from battery charging, sharing and consumption, several additional features are also
considered and studied in this contribution, such as a collision-free proximity motion
control. Additional research on this topic can be found in [12].

Another interesting approach to energy consumption is the one recently proposed in
[13], where an Energy-Aware Particle Swarm Optimization (EAPSO) bioinspired solver
is designed to optimize the movement strategy of aerial micro-robots. Interestingly,
the optimization process considers the energy levels of the robots for their efficient
movement. Although authors do not propose any charging mechanism, the designed
method renders a considerable reduction of the total energy consumption, making the
robotic swarm more reliable and robust. Another bioinspired scheme sensitive to the
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consumed energy is the Honey Bee inspired swarm in [14], which improves the energy
efficiency and is proven to be effective for foraging environments, such as the collection
of crops of materials.

Also interesting to mention is the preliminary research presented by [15], in which
an immune system response is studied for the development of energy sharing strategies.
In that case, the granuloma formation is explored, which is a process in which undesired
components are removed by immune systems. This behavioral concept is mapped to the
components of a Swarm Robotics system, enhancing the fault tolerance of the deployed
robots. A further step was taken in [16], where another immune system mechanism is
proposed based on the use of contact-less energy charging areas and their simulation-
based comparison to other energy charging mechanisms. A similar technique was pro-
posed in [17] to add self-healing capabilities to robotic swarms.

As stated in [18], an usual trend in the literature for dynamic energy charging of
robots is based on the deployment of power banks or removable chargers. Despite be-
ing quite effective, this approach has its own disadvantages, such as the resulting weight
increase of the robot equipment, often crucial in critical missions. With the intention of
overcoming these issues, [18] describes initial research on the implementation of an
energy-sharing scheme using a two-way communication mechanism. Finally, in [19] an
energy-encrypted contact-less system is described for improving the charging perfor-
mance and the energy transmission mechanism of swarm robots. To this end wireless
power transfer is used, enabling robots to charge their batteries even in moving sit-
uations. Other contributions related to dynamic energy charging include [20], which
elaborates on a novel tree-based schedule for mobile charger robots, which minimizes
the travel distance without causing energy depletion; and [21], which presents a versa-
tile mobile charging station capable of actively locating and replenishing the battery of
inactive robots.

1.2 Contribution

Even though the literature has been profitable in what regards to Swarm Robotics with
mobile battery recharging nodes, to the best of the authors’ knowledge routing for ex-
ploration missions in Swarm Robotics has so far been addressed without considering
such nodes as assets whose routes over the scenario at hand can be jointly optimized
with those of exploring robots. Furthermore, when dealing with overly complex scenar-
ios to be explored, the total area sensed by exploring robots can be intuitively thought
of as a conflicting objective with the remaining battery margin; in this sense, enforcing
the swarm to explore the entire area spanned by the scenario could create a risk of any
robot to run out of battery on site, and be left dead and unrecoverable. This work aims
at addressing this research niche by modeling and solving a bi-objective routing prob-
lem for mobile swarm robotics considering the minimization of this risk as a second
fitness metric that quantifies the quality of a generated route plan. The problem formu-
lation also includes the search for optimal routing plans for mobile battery recharging
nodes along with the routes of exploring robots. Both are solved efficiently by means
of a bi-objective bio-inspired solver driven by the aforementioned objectives. Results
obtained from a realistic simulation framework implemented in VREP [22] are shown
to be promising, with several future research lines stemming therefrom.
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The rest of this paper is structured as follows: first, Section 2 formulates mathe-
matically the optimization problem under study, including the conflicting objectives to
be maximized. Next, Section 3 delves into the utilized bi-objective solver, followed
by Sections 4 and 5 detailing the simulation setup and discussing the obtained results,
respectively. Section 6 concludes the paper.

2 Problem Statement
Following the schematic diagram depicted in Fig. 1, we assume a swarmN of |N | = N
robots, with time-dependent positions {pM,tn }Nn=1

.
= {(xM,tn , yM,tn )}Nn=1 (with t denoting

time) over a square area S� .
= [Xmin, Xmax] × [Ymin, Ymax]. Each of such robots is

equipped with sensors that allow them to explore an area {SM,tn }Nn=1 around its location
at time t, e.g. if the area is circular with radius RMn , then Sn = {(x, y) ∈ S� : (x −
xM,tn )2 + (x − xM,tn )2 ≤ R2

n} (areas shaded in , and in Fig. 1). The total area
ST (t) explored by the robotic swarm at time t′ will be then given by

ST (t′) =
t′⋃

t=1

N⋃

n=1

SM,tn . (1)

Another set ofM ≤ N robotsMwith battery recharging capabilities is deployed in
the same location jointly with N , with coordinates {p�,tm }Mm=1

.
= {(x�,tm , y�,tm )}Mm=1.

A robot m ∈ M will recharge the battery of a robot n ∈ N whenever 1) their distance
dtm,n falls below a certain threshold Dmax (area in in Fig. 1), i.e.

dm,n =

√(
x�,tm − xM,tn

)2
+
(
y�,tm − yM,tn

)2 ≤ Dmax, (2)

and 2) the above condition holds for a minimum of Tmin seconds, comprising the power
plug coupling/uncoupling along with physical maneuvers to align connectors. If both
conditions hold, energy is transferred from robot m ∈ M to n ∈ N at a rate of β units
of energy per second (measured in e.g. Watts). Furthermore, the movement of the robot
itself involves a battery consumption of γ units of power per unit of distance, so that in
a certain time gap ∆T measured from time t the remaining amount of battery BM,t+∆Tn

in robot n can be mathematically expressed as

BM,t+∆Tn = min
{
[1 + ID · IT · β] ·BM,tn − γV Mn ∆T,Bmax

}
, (3)

where V Mn denotes the cruise speed of the robot (in units of distance per unit of time),
and ID and IT are binary indicator functions such that ID = 1 if dt

′
m,n ≤ Dmax ∀t′ ∈

[t, t + ∆T ], and IT = 1 if ∆T ≥ Tmin (0 otherwise in both cases). In the above
expression Bmax stands for the nominal maximum battery load (in units of power) of
the robot model, which without loss of generality is assumed to be equal throughout the
entire robotic swarm.

With this definition in mind, the goal of the routing optimization problem is essen-
tially the determination of an optimal set of routes composed by N + M waypoints
WM,t,# .

= {wM,t,#n }Nn=1 = {(xM,t,#n , yM,t,#n )}Nn=1 and W�,t,# .
= {w�,t,#m }Mm=1 =

{(x�,t,#m , y�,t,#m )}Mm=1 for all robots in the swarm (both explorers and battery charg-
ers). Here optimality of the set of discovered routes refers to the Pareto relationship
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between the explored area and a quantitative measure of the risk of no return taken
when the entire swarm is commanded to follow a certain route. Intuitively, the more
area the swarm explores, the more likely is the chance that any of the robots in the
swarm lacks enough battery to return to the point {(xM,0, yM,0)} where robots had been
initially located. This risk is crucial in many practical situation, e.g. disaster events
where the topological characteristics of the facility to be explored remain unknown to
the command center before and while the mission is performed by the robotic swarm.

: robot n ∈ N

: waypoint assigned to robot n ∈ N at time tt

t′

tt

t

t′

t′ t′

t′′
t′′

t′′
S�

ST (t′) =
S�

t′ Time

: battery recharging robot m ∈ M

t

Command center

Battery

t′ Time

Bmax

”recharges”

: waypoint assigned to robot m ∈ M at time tt

Waypoints t′′ t′′ t′′ t′′ to select?

Margin

vs

Explored area

”recharges”

Fig. 1. Schematic diagram of the scenario tackled in this paper.

Mathematically this risk can be modeled by accounting, over the whole robotic
swarm, for battery margin BN,tn expected to be left for every robot should it proceed
and move to the assigned waypoint and return safely to {(xM,0, yM,0)}. Assuming that
the route optimization is performed at time t, the value of the battery margin BN,tn for
robot n ∈ N when commanded to go to waypoint wM,t,#n = (xM,t,#n , yM,t,#n ) can be
estimated as

BN,tn (pM,tn ,wM,t,#n , {pM,tm }Mm=1, {wM,tm }Mm=1) = BM,tn −BM,t+∆Tp,w+∆Tw,p0
n , (4)

where ∆Tp,w and ∆Tw,p0
are the times taken for robot n ∈ N to travel from its

current point pM,tn to the assigned waypoint wM,t,#n and therefrom to its initial position
{(xM,0, yM,0)}. This estimation is made by assuming that the robot goes straight without
colliding with any object nor any other robot along its path. It should be remarked that as
per (3), the battery expenditure reflected in BM,t+∆Tp,w+∆Tw,p0

n takes into account not
only the power consumed by the robot dynamics (which depends on its speed Vn and
the traversed distances), but also time periods along the path during which the relative
position between battery recharging robots and robot n ∈ N fulfill conditions ID and
IT required to recharge the battery of robot n on the move. The total duration of such
recharging periods can be computed as

∑
(ts,te)∈T M,t

n
(te − ts) over the set of periods

T M,tn , defined as

T M,tn
.
= {(ts, te) ∈ [t, t+∆Tp,w +∆Tw,p0

] such that :

1) te > ts; 2) ∃m ∈M : dt
′
mn ≤ Dmax∀t′ ∈ [ts, te]; and 3) te − ts ≥ Tmin}, (5)
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with [t′s, t
′
e]∩ [t′′s , t′′e ] = ∅ ∀(t′s, t′e), (t′′s , t′′e ) ∈ T M,tn . Therefore, the swarm-wide battery

margin BT (t) to be maximized at time t so as to keep the aforementioned risk to its
minimum is given by

BT (t) = min
n∈N

{
max

{
0, BN,tn (pM,tn ,wM,t,#n , {pM,tm }Mm=1, {wM,tm }Mm=1)

}
}
}
, (6)

from where the formal statement of the problem tackled in this work follows:
maximize

W�,t,#,WM,t,#
{
ST (t), BT (t)

}
, (7a)

namely, as the simultaneous maximization of two conflicting objectives: the surface ex-
plored by the robotic swarm and the minimum expected battery margin over the robots
should it be commanded to return to the initial deployment point after reaching the
enforced waypoint. WM,t,# ∈ S� and W�,t,# ∈ S�.

3 Proposed Solver
In order to efficiently tackle the above problem, we propose to apply a centralized meta-
heuristic solver capable of optimally balancing the two objective functions considered
in its formulation. The optimizer relies on the renowned Non-dominated Sorting Ge-
netic Algorithm (NSGA-II, [23]), a bio-inspired approach that hinges on the concepts
of non-dominance ranking and crowding distance to guide a multi-objective search over
a set of potential candidate solutions (in this case, waypoints defining routes). In essence
NSGA-II sorts a population of candidates according to 1) whether each solution within
the population dominates, in terms of Pareto optimality, other solutions in the pool
(yielding the so-called dominance rank of the Pareto front to which the solution at hand
belongs); and 2) the closest distance from every individual to the rest of solutions (corr.
crowding distance). By applying this dual selection procedure along with genetically
inspired crossover and mutation operators (with probabilities Pc and Pm, respectively),
the Pareto optimality of solutions contained in the population becomes improved it-
eration after iteration, to eventually yield a Pareto front estimation after a number of
iterations of this search procedure.

An algorithmic description of the NSGA-II approach designed in this work is pro-
vided in Algorithm 1. Individuals are encoded directly as N +M vectors wp

i denoting
the waypoints of all robots in the scenario, where i ∈ {1, . . . , N,N + 1, . . . , N +M},
p ∈ {1, . . . , P}, P denoting the population size and wp

i ∈ S� ∀i, p. A uniform
crossover operator and a Gaussian mutation with standard deviation σ have been se-
lected as heuristic operators. The iterative application of these operators and the NSGA-
II selection scheme outlined above is stopped after I iterations. It is important to remark
at this point that the solver must be run incrementally at certain time instants, e.g. the
solver is not run constantly along time but rather triggered at time ticks embedded in
the set T ∈ R[tini, tend], where tini is the time at which the robotic swarm is first
deployed and tend is the time at which the battery margin BT (tend) in the estimated
Pareto front falls below a fraction λ of the maximum battery capacity Bmax. For the
sake of simplicity, the NSGA-II solver will be executed once all robots have reached
their commanded waypoints WM,t,# and W�,t,# optimized previously, which yields
the time instants contained in T . To match this incremental nature of the proposed opti-
mization schedule, the population of individuals is accordingly initialized by including
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the best front found in the previous NSGA-II execution, randomly setting the remaining
individuals until filling the population.

Algorithm 1: NSGA-II solver applied to the problem under study.
Data: Number of exploration robots N ; number of battery recharging robots M ;

dimensions of the scenario Xmin, Xmax, Ymin, Ymax; sensing radii {Rn}Nn=1;
maximum distance Dmax and minimum time Tmin for battery recharge; nominal
robot speeds {V Mn }Nn=1 and {V �m }Mm=1; maximum battery capacity Bmax; battery
charging rate β; battery consumption rate γ; crossover and mutation probabilities
Pc and Pm; population size P ; maximum number of iterations I; proportion of the
minimum battery margin to the maximum battery capacity λ.

1 Deploy all robots on the initial location (xM,0, yM,0), and set waypoints wM,tini,#
n and

w�,tini,#
m equal to (xM,0, yM,0) ∀n ∈ N and ∀m ∈M

2 Set t′ = tini and T = {tini}
3 while BT (t) ≥ λBmax do
4 while pM,tn 6= wM,t

′,#
n and p�,t

m 6= w�,t′,#
m ∀n,m do

5 Let robots move to their assigned waypoints wM,tini,#
n and w�,tini,#

m

6 Update remaining battery {BN,tn }Nn=1 as per (4) and (5)

7 if t′ = tini then
8 Initialize P individuals in the population uniformly at random from S�

9 else
10 Retrieve the estimated Pareto from the previous run, introduce it in the

population. and fill the remaining individuals randomly over S�

11 for it← 1 to I do
12 Select parents, recombine them (w.p. Pc) and mutate (w.p. Pm) the produced

new offspring that represent a new set of P waypoints
13 Evaluate explored area and battery margin of offspring as per (1), (6)
14 Sort previous and new waypoints by rank and crowding distance
15 Discard the worst P individuals in the sorted, concatenated population

16 The estimated Pareto is given by the P individuals remaining in population
17 Select the set of waypoints in the estimated front that best suits the commanding

policy (e.g. maintain a battery margin above 10%), and assign them to robots
18 Set t′ = t, and T = T + {t}
19 All robots to initial position by wM,tini,#

n = w�,tini,#
m = (xM,0, yM,0) ∀n,m

4 Simulation Setup
In order to assess the performance of the proposed bi-objective routing approach, a sim-
ulation setup has been constructed by resorting to VREP, a renowned software platform
that permits to realistically model and perform experimental studies with swarms of
robots. In order to extract valuable insights, we have kept the dimensions of the exper-
imental scenario reduced to N = 5 exploring robots and a single battery recharging
node (M = 1) deployed on a 10 × 10 m2 square area. The maximum distance and
minimum time to recharge batteries are set to Dmax = 1 meters and Tmin = 3 sec-
onds, respectively. Robots with six mechanical legs (also referred to as hexapods) and
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diameter size equal to 0.5 m are utilized, with speeds equal to V Mn = 3.5 cm/s ∀n ∈ N
and V �m = 2.6 cm/s. Battery recharging is done at a rate of 1 % per second with respect
to the nominal maximum capacity Bmax of exploring robots, whereas the recharging
node is equipped with a total battery capacity equal to 10 · Bmax. The battery deple-
tion rate is fixed to γ = 1.5 % of Bmax per linear meter. As for the parameters of the
NSGA-II solver, crossover and mutation rates are set to Pc = 1 and Pm = 0.1, with
a population size of P = 20 individuals and I = 100 iterations per run. The decision
making criterion adopted to select a route among the estimated Pareto fronts was based
on selecting the route whose associated battery margin is closest to 20% of Bmax. If
no route with margin greater than this threshold, the robot swarm is enforced to return
to the origin position. Fig. 2 illustrates, from two different perspectives, the scenario
generated in VREP and simulated to yield the results discussed in the next section1.

5 Results and Discussion
The discussion on the results obtained by the proposed scheme starts with Fig. 3, which
illustrates the set of estimated Pareto fronts along time under different assumptions.
Specifically, every plot in this figure contains a three-dimensional cloud of points –
each representing a given route plan (set of waypoints) – which results from the ag-
gregation of all fronts estimated in simulation time for a single experiment. A total of
10 executions of the NSGA-II solver have sufficed for illustrating the main benefit of
our proposed routing scheme: by incorporating battery recharging functionalities, the
autonomy of the entire robotic swarm is enhanced, so that a larger area can be explored
for a given decision making criterion imposed on the minimum admissible battery mar-
gin for the robots to return back and safe to the base.

Fig. 2. Visual representation of the simulated setup yielding the results later discussed in the
manuscript; (left) isometric view; (right) top-down view. The robot dynamics are provided by the
VREP framework, whereas the NSGA-II routing approach has been implemented in Python and
communicates with VREP via remote API functions.

To this end two different cases are assessed, depending on the exploration radii
assumed for the sensing robots: 1) Rn = 0.9 meters, which should a priori render

1 Videos showing how robots move over this scenario can be found at:
https://youtu.be/r31teMtWRF0 and https://youtu.be/zewRVZQpvP8.
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minimum gains due to a more efficient area exploration; and 2) Rn = 0.5 meters,
smaller sensing radii for which the incorporation of battery recharging functionalities
in the swarm should provide higher gains. Indeed, this intuition is confirmed by the
results in the plots: as evinced by the plot on the left (higher exploration radii), almost
no exploration gain is obtained by including battery recharging functionalities ( ) when
compared to a unassisted robot swarm ( ). However, when reducing the sensing radius,
robots must traverse longer distances in order to explore the entire scenario, which
leads to higher battery consumption levels that could be compensated efficiently by
including a battery recharging node. This is precisely what the plot on the right in Fig.
3 reveals: when inspecting the evolution of the maximum battery margin in the fronts
computed along time, it is straightforward to note that the margin of the unassisted
swarm ( ) decreases much faster than that of its assisted counterpart ( ), falling below
the minimum admissible threshold (20%) imposed by the mission commander. As a
result, the entire swarm is commanded to return to the base once 61% of the scenario has
been explored. By including the mobile recharging node, the battery margin degrades
smoothly along time, and is maintained above the threshold to explore a higher area
percentage (ca. 80%) even for more conservative policies. For instance, should it have
been set to 60% the unassisted swarm would have explored less than 50% of the area; in
the assisted case robots would have been operative for a longer time, attaining explored
area ratios close to 80%.
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Fig. 3. Three-dimensional plot showing the Pareto trade-off between battery margin and explored
area estimated by the NSGA-II solver as the simulation evolves (represented by the NSGA-II run
index). The left plot corresponds to the case whenRn = 0.9 meters, whereas the right plot depicts
the case when Rn = 0.5 meters, in both cases ∀n ∈ {1, . . . , 5}. Also are included in the plots
the two-dimensional projections of the point cloud along every axis, so that the progression of
the maximum achievable value of each metric. The plane shaded in gray indicates the minimum
admissible battery margin imposed by the mission commander (20%).

Besides the evidence provided by the above plots, further insights can be extracted
by taking a closer look at the trajectories traced by the robots in the swarm for both
cases. One should expect that for high values of the sensing radii Rn, nodes should fea-
ture relatively less dynamic mobility patterns over the scenario than those correspond-
ing to lower values of this parameter. The plots in Fig. 4 go in line with this expected
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behavior. In particular mobility traces of the robotic swarm are shown for the assisted
robotic swarm with Rn = 0.5 meters (left) and Rn = 0.9 meters (right). It can be
noted that the former case features rectilinear trajectories composed by long segments,
whereas in the latter all robots in the swarm describe topologically tangled traces, and
few cases reach the boundaries of the scenario. In summary, the sensing radii plays a
crucial role in the behavior of the swarm and ultimately, in the attainable performance
gain from the introduction of mobile recharging nodes in the swarm.
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Fig. 4. Trajectories followed by the robots in the swarm forRn = 0.5 meters (left) andRn = 0.9
meters (right). A visual inspection permits to infer that lower values of the sensing radius make all
trajectories be shorter and more complex as a result of a lower overlapping between the sensing
areas of robots in the swarm. On the contrary, when the sensing radius increases robots describe
cleaner, rectilinear trajectories.

6 Concluding Remarks
In this paper, a routing problem for collaborative exploration in Swarm Robotics has
been presented. An analysis of the recent literature supports that one of the main is-
sues in these systems is the energy consumption and reliability of the swarm, which
jeopardizes the performance of complex missions and tasks. This identified issue is
what lies behind the rationale for this research work: to include a subset of robots in
the swarm endowed with battery charging capabilities. The challenge resides in how to
properly route the robots in the scenario considering the existence of such nomadic bat-
tery recharging nodes, which has been formulated as a bi-objective optimization prob-
lem where a Pareto equilibrium must be met between the explored area and the risk of
battery outage. In order to solve efficiently this problem, a bio-inspired approach has
been designed based on the well-known NSGA-II solver. A realistic experimental setup
comprising the VREP robotic simulation framework has been constructed so as to shed
light on how the proposed solver performs in practice. The obtained results have proven
empirically the practicality and inherent utility of the proposed routing scheme, which
provides the commander of the mission with more valuable information for decision
making than traditional schemes based on a single fitness function.
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Several lines of research related to this work have been planned for the near future,
e.g. the inclusion of other bioinspired multi-objective heuristic engines (e.g. SMPSO,
MOEA/D) and their comparison to each other in terms of multi-objective indicators.
Another research path that will be prospected will gravitate on relaxing and extending
the assumptions and constraints defining the considered scenario towards, for instance,
co-located exploration tasks (demanding different sensing equipment). Among them,
the most challenging research direction to be followed focuses on distributing the in-
telligence among the robots in order to realize a true robotic swarm, namely, a swarm
of robots that communicate to each other and exchange information, deciding on an
optimal set of waypoints without requiring a centralized command center as the one
assumed in this work.
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Abstract. A cooperative model of eight popular nature-inspired algo-
rithms (CoNI) is proposed and compared with the original algorithms on
benchmark set CEC 2011 collection of 22 real-world optimization prob-
lems. The results of experiments demonstrate the superiority of CoNI
variant in the most of the real-world problems although some of original
nature-inspired algorithms perform rather poorly. Proposed CoNI shares
the best position in 20 out of 22 problems and achieves the best results
in 8 out 22 test problems. Further fundamental points for improvement
of CoNI are in selection of topology, migration policy, and migration
frequency.
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1 Introduction

Many researchers have developed tens of optimization algorithms based on sys-
tems from nature [1]. Beside these methods, another scientists propose existing
good-performing methods enhanced by new features [2, 3]. The goal of this paper
is to reveal possibility of cooperation of nature-inspired algorithms in order to
obtain more efficient optimization algorithm.

In our recent works [4, 5], we have experimentally compared the performance
of nature-inspired algorithms on the collection of real-world optimization prob-
lems. It was found that none of eight nature-inspired algorithms selected to
the comparison is able to provide a similar results as three recently proposed
adaptive DE variants. Furthermore, some of the nature-inspired methods even
perform worse than the blind random search.

In this paper, we apply and study the results of cooperative model of well-
known nature-inspired optimization algorithms. A practicality of the proposed
model will be achieved on the real-world problems [6] with various dimension-
ality. The purpose of use of these problems is simple, we want to show the
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performance of compared algorithms on selected real problems to help scientists
in choice of the proper optimization method. A blind random search method was
not selected for this experiment.

When a problem is solved in global optimization, there is an objective func-
tion f(x), x = (x1, x2, . . . , xD) ∈ IRD defined on the search domain Ω limited

by lower and upper boundaries, i.e. Ω =
∏D

j=1[aj , bj ], aj < bj , j = 1, 2, . . . , D.
The global minimum point x∗, which satisfies condition f(x∗) ≤ f(x), ∀x ∈ Ω
is the solution of the problem.

The rest of the paper is organized as follows. Section 2 shows brief descrip-
tion of the nature-inspired algorithms selected for experimental comparison. A
cooperation model of nature-inspired algorithms is described in Section 3. Ex-
perimental setting and methods applied to statistical assessment are described
in Section 4. Experimental results on real-world optimization problems are pre-
sented in Section 5. Section 6 describes conclusion of the paper with some final
remarks.

2 Selected Nature-Inspired Algorithms

The survey of bio-inspired algorithms has been presented recently in [1]. The
book [7] along with mentioned survey were the main sources for the selection
of nature-inspired algorithms for this experimental comparison. Based on these
sources and previous studies [4, 5], the list of alphabetically sorted eight nature-
inspired methods with their descriptions follows.

The artificial bee colony algorithm (ABC) was proposed by Karaboga in
2005 [8]. This algorithm models the behavior of the bees consist of three groups
- employed bees, onlookers bees, and scouts. The only input parameter limit,
usually equal to the population size, controls a number of unsuccessful new
’food positions’ (position in Ω) necessary to find a new random food position.
An employed ith bee jth position is updated by y(i, j) = P (i, j) + (P (i, j) −
P (r, j)) U(−1, 1), where j is randomly selected index from (1, D) of the position
to be updated (D is the dimension of the problem), r is randomly selected bee
different from current ith bee and U(−1, 1) is a random number from the uniform
distribution with parameters given in parentheses.

The bat algorithm (abbreviated Bat) simulates an echolocation behavior of
real bats controlled by emission rate and loudness. The artificial representation
of this phenomenon uses parameter setting that follows the original publication
of Yang [9]. Maximal and minimal frequencies are set up fmax = 2, fmin = 0,
respectively. A local-search loudness parameter is initialized Ai = 1.2 for each
bat-individual and reduced if a new bat position is better than the old one
using coefficient α = 0.9. The emission rate parameter is initialized to each bat-
individual ri = 0.1 and increased by parameter γ = 0.9 in the case of a successful
offspring.

The dispersive flies optimization algorithm (abbreviated DFO hereafter) was
proposed in 2014 [10] by al Rifaie. The only control parameter called disturbance
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threshold, is set to value from the recommended range 1×10−2 < dt < 1×10−4,
i.e. dt = 1 × 10−3.

The cuckoo search algorithm (denoted Cuckoo) was introduced by Yang in
2009 [11]. This algorithm was inspired by cuckoo birds ’nest-parasitism’. Proba-
bility of the cuckoo’s eggs laid in a bird-host nest is set pa = 0.25 and the control
parameter of Lévy flight random walk is set to λ = 1.5.

The firefly algorithm (called Firefly in follows) proposed by Yang in 2008 [7]
models the ’light-behavior’ of fireflies when attracted another fireflies. This ar-
tificial representation of fireflies model has several control parameters that are
set to recommended values – randomization parameter α = 0.5, light absorption
coefficient γ = 1, and attractiveness is updated using its initial β0 = 1 and
minimal βmin = 0.2 values.

The only representative of the algorithms modeling the life of plants is Flower
Pollination Algorithm for Global Optimization (denoted Flower hereafter) and
was proposed by Yang in 2012 [12]. The goal of this approach is to model a
process of transferring pollen grains between the flowers to their further repro-
duction. The main control parameter equals to probability of switching between
global and local search is set to p = 0.8. A second parameter controlling Lévy
distribution is set up λ = 1.5, as in the Cuckoo search algorithm.

The particle swarm optimization (PSO) originally proposed by Kenedy and
Eberhart in 1995 belongs to very popular and ofen studied nature-inspired algo-
rithms [13]. In this experiment, the basic variant of PSO with slightly enhanced
of particles’ velocities updated by the variation coefficient w and coefficient c is
used. The variation control parameter w is set as a linear interpolation from max-
imal value wmax = 1 to wmin = 0.3, for each generation. Parameter controlling
a local and a global part of the velocity update is set c = 1.05. A new velocity is
computed by vi,G+1 = wG+1 vi,G +c U(0, 1) (pbest −xi)+c U(0, 1) (gbest −xi),
where G denotes generation, U(0, 1) is random number generated from uniform
distribution with parameters given in parentheses, xi is current particle position,
pbest is up-to-now best historical position of the current particle, and gbest is a
position of the best particle in swarm history.

The self-organizing migrating algorithm (abbreviated SOMA) was proposed
by Zelinka and Lampinen in 2000 as a model of a pack of predators [14]. SOMA
has several control parameters and particle strategies that crucially influence the
algorithm’s efficiency. The best settings based on our preliminary experiments
was taken for this experiment. Parameter controlling the (maximal) length of
individual way toward to leader is set PathLenght = 2, the step size is set to
Step = 0.11, and perturbation parameter is set Prt = 0.1. There are also sev-
eral strategies of individual movement, the best performing strategy all-to-one
as indicated in the preliminary experiments was applied to comparison on the
CEC 2011 benchmark.
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3 Cooperative Model of Nature-Inspired Algorithms

The main goal of this paper is to construct cooperative model of the aforemen-
tioned nature-inspired algorithms to achieve better efficiency. There are many
possibilities how to employ selected k various algorithms to cooperation. We ap-
plied a modification of our well-performed recent cooperative model described
in [15, 16]. A comprehensive review of a control parameters settings in a dis-
tributed evolutionary algorithms is in [17, 18]. The idea of the cooperative model
is based on migration model with ring topology [16] and its pseudo-code is illus-
trated in Algorithm 1.

Algorithm 1 Cooperative Model of Nature-Inspired Algorithms

initialize nature-inspired algorithms’ populations Pi, i = 1, 2, . . . , k
evaluate individuals of all algorithms’ populations
while stopping condition not reached do

for i = 1, 2, . . . , k do
perform ngen generations of ith algorithm’s population

end for
construct a ring topology of randomly ordered algorithms’ populations
migrate selected individuals between populations by the unidirectional ring

end while

Proposed cooperative model has beside selected ring topology several input
parameters. At first, k populations of equal size Np is initialized and developed by
k various algorithms. Then, ngen generations of all nature-inspired algorithms
are performed independently and several individuals are selected to exchange
with other populations. This exchange is called migration and preliminary ex-
periment [15] shows that combination of the best and nind randomly selected
individuals is a good choice. Migration is performed between couple of popula-
tions such that selected the best individual from the donor population replaces
the worst individual in the acceptor population. Randomly selected nind indi-
viduals from the donor population replaces nind randomly selected individuals
in the acceptor population except the best individual.

The couples of populations to migration are given by ring topology where
each population has two neighbors - preceding and following. For higher level
of randomness, order of algorithms’ populations in ring topology is given ran-
domly for each migration. The populations are not communicated with the same
counterparts for higher level of diversity of individuals in overall CoNI algorithm.
Selected nind +1 individuals from the donor population (preceding in circle man-
ner) replaces the selected individuals in acceptor population (following in circle
manner).

A pseudo-parallel representation will be used to estimate efficiency of the
proposed cooperative model. Physically, ngen generations are performed subse-
quently for each algorithm on single-CPU PC (pseudo-parallelism). The quality
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of the proposed cooperative model is evaluated by function value and also by
number of function evaluations. The name of the proposed cooperative model of
nature-inspired algorithms is abbreviated as CoNI in following text.

4 Experimental Setting

The test suite of 22 real-world problems selected for CEC 2011 competition
in Special Session on Real-Parameter Numerical Optimization [6] is used as a
benchmark in the experimental comparison. The functions in the benchmark
differ in the computational complexity and in the dimension of the search space
which varies from D = 1 to D = 240.

For each algorithm and problem, 25 independent runs were carried out. The
run of the algorithm stops if the prescribed number of function evaluations
MaxFES = 150000 is reached. The partial results of the algorithms after reach-
ing one third and two thirds of MaxFES were also recorded for further analysis.
The point in the terminal population with the smallest function value is the
solution of the problem found in the run.

The population size N = 90 was used in all the nature-inspired algorithms
and CEC 2011 problems. The number of nature-inspired algorithms cooperative
in CoNI is k = 8, the population size of each cooperative algorithm is set equally
to Np = 15, number of generations before migration is ngen = 10 and nind = 4
individuals are randomly selected for each of migration. The other control param-
eters are set up according to recommendation of authors in their original papers.
All the algorithms are implemented in Matlab 2010a and all computations were
carried out on a standard PC with Windows 7, Intel(R) Core(TM)i7-4790 CPU
3.6 GHz, 16 GB RAM.

5 Results

A Table 1 contains the basic characteristics of CoNI algorithm at final stage of
the search (FES= 150000) and the results of the Kruskal-Wallis test including
significance and multiple comparison based on Dunn’s method. The detailed re-
sults of the original nature-inspired algorithms on CEC 2011 real-world problems
used in this experiment are presented in previous works [4, 5]. The median value
for the problem (row) where CoNI algorithm achieves the best result out of all
algorithms in comparison is printed bold.

Kruskal-Wallis non-parametric one-way ANOVA test was applied to each
problem to obtain significant differences. It was found that the performance of
the algorithms in comparison differs significantly, the null hypothesis on the
same performance is rejected in all the problems at all dimensions with achieved
significance level p < 1×10−5 and it means that algorithms’ performance differs
even in the similar medians.

The best performing algorithms significantly different from the followers and
mutually with no significant differences are listed in the column ”best” ordered
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Table 1. The basic characteristics of function values found by the cooperative model
and results of Kruskal-Wallis multiple comparison

F D min max med mean std best worst

T01 6 1.18E-06 14.779 8.41626 6.92583 5.98041 Cuckoo,CoNI Bat,DFO
T02 30 -25.5936 -15.3846 -22.0875 -21.5095 3.13850 CoNI, Bat,DFO

ABC,SOMA
T03 1 1.15E-05 1.15E-05 1.15E-05 1.15E-05 5.19E-21 all Firefly
T04 1 0 0 0 0 0 all Firefly
T05 30 -35.7924 -31.4839 -34.1075 -33.5094 1.29947 ABC,CoNI DFO,Bat
T06 30 -29.1627 -21.2696 -27.4277 -26.5641 2.58163 CoNI,SOMA DFO,Bat,

Firefly
T07 20 0.807308 1.3313 1.04799 1.0488101 1.54E-01 CoNI,SOMA, DFO,Bat,

Cuckoo Firefly
T08 7 220 220 220 220 0 all Bat,Firefly,

DFO
T09 126 13082.7 36124.4 19363.4 21467.9 6618.66 ABC,CoNI Firefly
T10 12 -20.8443 -12.773 -19.2706 -18.8992 2.00284 Cuckoo,CoNI Bat,Firefly,

DFO
T11.1 120 62744.9 212805 71228.1 79231.1 28762.1 ABC,CoNI DFO,Firefly
T11.2 240 1.10E+06 1.17E+06 1.12E+06 1.12E+06 17712.3 CoNI,ABC Bat,Firefly,

DFO
T11.3 6 15445.5 15453.4 15447.6 15448.2 2.11792 Flower Bat,Firefly,

DFO
T11.4 13 18485.2 19148.6 18820 18853.86 155.764 Flower ABC,Bat,

DFO
T11.5 15 32781.8 32984.7 32878 32872.0 51.1892 SOMA,CoNI, Bat,Firefly

Flower
T11.6 40 129038 137573 133039 133312 2570.42 Flower,CoNI, Firefly,DFO

SOMA
T11.7 140 1.92E+06 2.54E+06 1.95E+06 2.01E+06 139086 CoNI,Flower, Firefly,

SOMA DFO,Bat
T11.8 96 941250 1.02E+06 946333 951888 16253.6 CoNI,SOMA Firefly,Bat
T11.9 96 1.00E+06 1.84E+06 1.43E+06 1.42E+06 176918 SOMA, Firefly,Bat

CoNI,PSO
T11.10 96 941689 1.14E+06 945565 962950 45817.2 CoNI,SOMA Firefly,Bat
T12 26 12.4059 20.3057 16.7507 17.0220 1.96866 CoNI,SOMA DFO,Bat
T13 22 11.5376 26.6287 21.4875 20.5451 3.78682 ABC,CoNI, Bat,DFO

SOMA

ascending with respect to the median function value. The worst performing al-
gorithms significantly different from their predecessors and mutually with no
significant differences are listed in the column ”worst” ordered from the worst
performing algorithm. Based on these columns, it is not easy to assess the supe-
riority or inferiority of the algorithms. In the case of the proposed CoNI, the first
position (column best) is not occupied only for the problems T11.3 and T11.4.
Comparing medians of these problems it is obvious that CoNI takes at least the
third position out of nine algorithms.

For better overview of the comparison of the presented algorithms’ perfor-
mance, the number of first, second, third, and the last positions from Kruskal-
Wallis test are computed and showed in Table 2. It is clear that CoNI is able
to achieve the first position in 8 out of 22 real-world problems. In the remain-
ing problems, CoNI occupies the second or the third position without signifi-
cant difference between CoNI and the best performing counterpart (based on
Kruskal-Wallis test). Further promising results provide ABC, Flower, SOMA,

236 sciencesconf.org:bioma2018:183871



Table 2. Number of significant wins, second, third, and the last positions of the algo-
rithms

Position ABC Bat Cuckoo DFO Firefly Flower PSO SOMA CoNI

1st 4 0 2 0 0 3 0 2 8
2nd 2 0 1 0 0 1 1 5 9
3rd 0 0 3 0 0 2 5 7 2
last 1 8 0 5 8 0 0 0 0

and Cuckoo. An interesting is significant win of Flower algorithm in T11.3 and
T11.4 problems. The worst performing algorithms in whole experiment are Fire-
fly and Bat algorithm followed by DFO. Necessary to note that Firefly algorithm
performs substantially better when solving an artificial problems as CEC 2014
(see results in [5]).

In Table 3 the results of Friedman test are presented. This test was carried out
on medians of minimal function values at three stages of the search, namely after
FES = 50000, 100000, and 150000. The null hypothesis on equivalent efficiency
of the algorithms was rejected at the all stages of the search, p-value achieved
in Friedman test was less than 5 × 10−6.

Table 3. Mean rank of Friedman test for all algorithms

alg 1st stage 2nd stage 3rd stage avg

CoNI 2.8 2.2 2.1 2.3
SOMA 2.7 3.0 3.0 2.9
PSO 4.3 4.2 4.4 4.3
ABC 3.9 4.5 4.6 4.3
Cuckoo 4.7 4.3 4.0 4.3
Flower 4.6 4.4 4.3 4.4
DFO 7.0 6.9 7.1 7.0
Firefly 7.6 7.6 7.7 7.6
Bat 7.6 7.8 7.9 7.8

The mean ranks from Friedman test of the algorithms in three stages are
also illustrated in Fig. 1. Moreover, the mean rank values for each algorithm
of three stages are joined for better conclusions. Notice that better performing
algorithm over all 22 test problems achieves smaller mean rank and vice versa.
Based on these results (especially a graphical representation) three groups of
compared algorithms with respect to performance are arisen. The worst per-
forming triplet is formed by DFO, Firefly, and Bat algorithm. All these nature-
inspired algorithms are often used by researchers to solve the real problems. The
“middle-performing” group is formed by PSO, Flower, Cuckoo, and ABC algo-
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Fig. 1. Mean rank of Friedman test for all algorithms

rithm where performance of ABC and PSO is gradually in the search process
surprisingly decreased. Mean ranks of these algorithms are approximately equal
to the average rank. Whilst performance of SOMA in the best couple is gradu-
ally decreased with increasing FES, CoNI with increasing function evaluations
achieved less mean rank.

Performance of new CoNI algorithm should be also compared with the per-
formance of the winner of CEC 2011 competition, GA-MPC. Detailed results of
this algorithm are provided in [19]. It is clear that CoNI is able to outperform
GA-MPC in 5 problems, i.e. T04, T11.6-8, and T11.10 and in two problems (T03
and T08) both algorithms perform equally. In the remaining cases, the CEC 2011
winner performs better than cooperative model of nature-inspired algorithms.

Achieved results of this experimental study show that proposed cooperative
model of nature-inspired algorithm is able to outperform the original algorithms
and also partially the CEC 2011 winner. Further analysis of CoNI features should
detect if some of the used nature-inspired algorithms performs better or worse.
For this purpose, the number of successfully generated new individuals are com-
puted for each of eight nature-inspired algorithms in CoNI. This characteristic
denotes the number of newly generated individuals better than the old solution
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in accordance with the goal function. For better comparison, a percentage suc-
cess of each (ith) used algorithm is computed as a proportion of its success (suci)
from whole success (suctotal):

psuci =
suci

suctotal
· 100, i = 1, 2, . . . k (1)

For better comprehensibility, box-plot of the percentage successes of all al-
gorithms is depicted in Fig. 2.

Fig. 2. Comparison of percentage successes (psuc) in CoNI algorithm

From the box-plot in Fig. 2, it is clear that the biggest proportion of suc-
cessfully generated new-individuals provides Cuckoo algorithm with ABC and
surprisingly DFO algorithm. This situation is caused by very simple reason. The
worst individual of current algorithm in CoNI is replaced by the selected best
individual (from another algorithm) and sometimes this new solution could be
substantially better than current best solution (case of DFO). Then, some in-
dividuals of such algorithm will be more increased because of using of the new
best solution. Thin boxes in the bottom of the plot for PSO and Flower suggest
lower success-proportion in most of the real-world problems.

Except the percentage successes, the “name” of the nature-inspired algorithm
employing the overall best solution of CoNI is stored in 17 stages of CEC 2011
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problems. Because the lack of space, total number of “ownership” of the best
solution in 17 stages of 22 test problems is computed: ABC (112), SOMA (79),
Bat (70), Firefly (62), Cuckoo (34), Flower (11), PSO (3), and DFO (3). We can
see that the most often algorithm providing the overall best solution of CoNI
is ABC. This result is in contradiction with the mean rank of ABC algorithm
(Fig. 1) and the success of this algorithm in CoNI (Fig. 2). The least counts
of developed the best CoNI solution have DFO and PSO algorithms. When we
consider presented results (Table 2 and Fig. 2), the performance of both these
algorithms is rather less, especially for DFO variant. However, the percentage
success of PSO algorithm in CoNI model belongs to better foursome. The phe-
nomenon, when badly performing separately applied nature-inspired algorithm
has high success in CoNI model is caused by big number of small improvements.
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Fig. 3. Minimal function values from 25 runs in problems with various dimensionality

The various performance of nature-inspired algorithms is the main reason
for using of the cooperative model because higher variability of partial solutions
causes higher ability to produce more diverse individuals. The diversity of in-
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dividuals is crucial feature of evolutionary algorithms in the search of the right
solution of optimization problems.

The performance of CoNI algorithm in problems with various dimension level
is depicted in Fig. 3. The T11.3 problem (D = 6) is solved successfully by most
algorithms (boxes are flattened at the bottom of the figure). For higher dimen-
sions (problems T13, T11.8), the better performance of CoNI is more obvious.
Furthermore, for the problem with highest dimension, T11.2, (D = 240) CoNI
achieves the best results among all algorithms in comparison.

6 Conclusion

In this paper the cooperation model of several algorithms based on well-known
migration model is proposed to increase the efficiency of nature-inspired algo-
rithms. The results of experimental comparison of eight popular nature-inspired
algorithms with the cooperative model of these algorithms demonstrate clearly
the superiority of the proposed CoNI algorithm. Good performance of CoNI is
caused by exchange of the individuals between variously performing algorithms.
A proper settings of the parameters of cooperative model promises better results
in various real-world problems.

Although nature-inspired algorithms belong to very popular optimization
methods, their efficiency is often poor as it is shown in results of [4, 5]. When
we consider a No-Free-Lunch theorem [20] – each algorithm is better performing
in another kind of optimization tasks – cooperative model of nature-inspired
algorithms is simple idea to achieve better results. The high performance of CoNI
is caused by exchange the individuals of variously successful applied algorithms
in various problems. Without the migration, the results are not better than the
results of the best non-parallel nature-inspired algorithm. Proposed cooperative
algorithm shares the best position in 20 out of 22 problems and achieves the
best results (first position) in 8 out 22 test problems.

Comparison of CoNI with the winner of CEC 2011 real-world problems test
suite – (GA-MPC [19]) shows that cooperative model is competitive in most of
real problems. We believe that there exist possibilities of the improvements. Es-
pecially selection of proper topology, migration policy, and migration frequency
are the fundamental points for improvement of the cooperative model [17, 18].

The source code of newly proposed CoNI algorithm in Matlab is available
at www1.osu.cz/∼bujok/, the source code of some other state-of-the-art nature-
inspired algorithms can be found on web site of MathWorks, www.mathworks.com.
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Abstract. This work is devoted to tackle multi-objective optimization
under uncertainty problems using the SABBa framework (Surrogate-
Assisted Bounding-Box approach). It is based on the coupling of the
Bounding-Box approach and a surrogate-assisting strategy. It aims at
efficiently dealing with robust optimization problems with approximated
robustness measures. Here, some developments are introduced, which
are focused on the treatment of reliability constraints and the computa-
tion of the probabilistic Hausdorff distance to analytical optima. Finally
objective measures probability distribution are formulated and their per-
formance assessed and compared with conservative boxes.

Keywords: Multi-objective optimization, Uncertainty-based optimiza-
tion, Error boxes, Surrogate model

1 Introduction to SABBa framework

The basic ingredient of the SABBa framework is the Bounding-Box (BB) ap-
proach, which has been formulated in [1] and [2]. A Bounding-Box (also called
here as conservative box) is defined as a multi-dimensional product of intervals
centered on approximated objectives and containing the associated true values.
In SABBa, it is supplemented with a surrogate-assisting strategy, which is very
effective in order to reduce the overall computational cost associated to the
BB approach during the last iterations of the optimization. Note that SABBa
is applicable regardless of specific optimization and uncertainty quantification
methods and can be then used with whatever state-of-the-art methods.

In [3], it has been shown that this
framework is a robust strategy i.e. true
optimal designs are never discarded and
are refined within targeted accuracy. In-
terpolated designs from the surrogate-
assisting strategy can be used through
the redefinition of the objective func-
tions and the choice of the size of error
boxes. Fig. 1: Bounding-Boxes
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The SABBa framework yields a strong coupling between the costly conver-
gence of the UQ process and the quality of the associated design. Fig. 1 gives
an example of such dominated and non-dominated boxes. This coupling heav-
ily relies on the definition of Boxed Pareto dominance. Intuitively, a box B1 is
dominated when the worst outcome of another box B2 dominates in the classical
sense the best point of B1.

2 Extension to constrained optimization problem

This paper is devoted to the development of SABBa in order to tackle con-
strained optimization problems. This implies a redefinition of the Boxed Pareto
dominance, which is formulated as follows. A box B1 can only be dominated
by another box B2 if any outcome of the box B2 in the dimension of reliability
measures satisfies the associated constraint.

The behavior of the uncertainty quantification process is studied both in
separated uncertainty dimensions only) and coupled (design and uncertainty di-
mensions) spaces. While coupled spaces may allow fewer refinements in areas
where the surrogate-assisting model is not yet converged, it increases the dimen-
sionality of the problem and may slow the convergence. Recently, coupled spaces
has received much attention, such as [4], because of its intrinsic capability of
correlating quantity of interest in the design dimensions.

A preliminary result from the classical SABBa framework is presented here.
The test-case studied is the following bi-objective problem :

minimize: f(x) =

(
µ(u)
σ2(u)

)

by changing: (x1, x2) ∈ [1, 2]× [1, 2]

with: u(x, ξ) = ξ − x1ξ5 + cos(2πx2ξ) + 5

and: ξ ∼ U([0, 1])

In order to compare strategies from a quantitative point of view, the conver-
gence of the algorithm is measured on analytical test-cases by means of Haus-
dorff distance to the Pareto optimal set. As the set of interest is here a set of
boxes in the objective space, the modified Hausdorff distance is extended to
aleatory Pareto optimal design by considering boxes as uniform distribution on
the robustness measures. The indicator of interest is then the following expected
modified Hausdorff EXP̃

[
d′H(XP ,XP̃)

]
with:

d′H(A,B) = max
( 1

NA

∑

a∈A
min
b∈B

d(a, b),
1

NB

∑

b∈B
min
a∈A

d(a, b)
)

The following Fig. 2 show the convergence of the expected modified Hausdorff
distance between the SABBa framework in coupled or separated spaces and the
use of an a priori metamodel built in the coupled spaces. One can see here both
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Fig. 2: Convergence curves

a quicker convergence of the SABBa framework and a significant reduction of
the variability in terms of the µ± σ area.

Note that the SABBa framework is based on the computation of conservative
error boxes. These boxes have a high chance of overestimating the true variability
of the robustness measures. This is due to both the conservative paradigm and
the assumption of uniform distribution within the boxes.

In the final paper, a cheaper but more intrusive version of the framework
will be presented in details, where a Gaussian Process model in the uncertainty
space may allow for the computation of the robustness measures joint distribu-
tion. These distributions could then be taken as correlated gaussian input un-
certainties, as an extension of [5], in order to perform multi-objective bayesian
optimization in the objective space. Refinement in this context should allow both
uncertainty quantification on a new design and UQ refinement on a previous one.

This strategy will be validated first in separated spaces as explained above
but may be extended to a coupled space formulation.
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Abstract. In the last decades the Vehicle Routing Problem (VRP) and
its ramifications, including the Capacitated Vehicle Routing Problem
(CVRP), have attracted the attention of researchers mainly because their
presence in many practical situations. Due to the difficulties encountered
in their solutions, such problems are usually solved by means of heuristic
and metaheuristics algorithms, among which is the Genetic Algorithm
(GA). The solution of CVRP using GA requires a solution encoding step,
which demands a special care to avoid high computational cost and to
ensure population diversity that is essential for the convergence of GA
to global optimal or sub-optimal solutions. In this work, we investigated
a new binary encoding scheme employed by GA for solving the CVRP.
Conducted experiments demonstrated that the proposed binary encoding
is able to provide good solutions and is suitable for practical applications
that require low computational cost.

Keywords: Genetic Algorithm, Solution Encoding, Chromosome Rep-
resentation, Capacitated Vehicle Routing Problem.

1 Introduction

Optimization of the logistics system has become one of the most important
aspects of the supply chain during the last three decades [1]. In this context,
many researchers have invested their efforts in solving various problems in this
segment, among them is the Vehicle Routing Problem (VRP).

In general, the VRP consists in defining the routes that a set of vehicles
must follow to supply the demand of certain customers, respecting the oper-
ational restrictions imposed by the context that they are inserted. The most
common objectives of the VRP are minimize the total distance traveled, im-
prove the transport time, minimize the number of vehicles needed and reduce
the total cost of the routes [2]. One of the main ramifications of the VRP is the
Capacitated Vehicle Routing Problem (CVRP), which is considered in this work
and explained in detail in section 2.1.
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In the literature there are several proposals to solve the VRP (and its rami-
fications) using different heuristic and meta-heuristics techniques, among which
are: Tabu Search, Genetic Algorithms, Simulated Annealing, Ant Colony Opti-
mization, Particle Swarm Optimization, Variable Neighborhood Search, and Hy-
brid Meta-Heuristics [3]. The Genetic Algorithm (GA) stand out by its versatility
of construction and the good results that it has been demonstrated in solving
complex problems, including VRP, as can be seen in Lau et al. [4]; Bermudez
et al. [5]; Wang and Lu [6]; Lee and Nazif [2]; Tasan and Gen [7]; Ursani et al.
[8]; Lu and Yu [9]; Kuo, Zulvia and Suryadi [10]; Vidal et al. [11]; Reiter and
Gutjahr [12]; Osaba, Diaz and Oniera [13] and Lima et al [14].

A trivial way of encoding solutions for the VRP using GA is through a three-
dimensional binary matrix in which the rows are associated with the vehicles, the
columns with the costumers and the depth with the visitation order. However,
this encoding scheme demands high computational cost and may be inefficient
in terms of population diversity, which is essential to promote the convergence
to global optimum or sub-optimal solutions. Thus, many studies found in the
literature has shown concern about how to encode VRP solutions.

In this context, and differently from all above mentioned works which explore
improvements in the heuristic and meta-heuristic algorithms, this work is focused
in more efficient ways to encode solutions in GA. Specifically, we are proposing
a new binary encoding scheme in GA for Solving the CVRP, which constitutes
the main contribution of this work.

2 Theorectical Background

2.1 Capacitated Vehicle Routing Problem (CVRP)

The CVRP is one of the most basic version of VRP. In this problem all customers
have their demands previously defined which must be attend entirely by a fleet
of homogeneous vehicles, all of them running from only distribution center. In
the CVRP, just the vehicle capacity restriction is imposed [15], that is, the sum
of the demand of all customers belonging to a route does not exceed the capacity
of vehicle used to execute that route. Figure 1 illustrates an example of CVRP,
which envolves two vehicles for meeting the demands of eighteen geographically
dispersed customers.

Let be G = (V,E) a graph in which V = 0...n is the set of vertices that
represent the customers and E the set of edges, representing the paths connecting
the customers to each other and to the distribution center. Each edge (vi, vj) has
associated a cost Cij of the path between the costumers represented by vertices
i and j. When Cij = Cji, the problem is known as symmetrical, otherwise the
problem is identified as asymmetrical. A set of K identical vehicles with capacity
cv is allocated to the distribution center. For each customer v is associated a
demand dv, and for the distribution center is defined d0 = 0.

In summary, the CVRP consists of finding a set of routes, where each route
is traveled by a vehicle, with the objective to minimize the total cost of the
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Fig. 1. Example of routing with the vehicles starting from a distribution center.

routes (TC), respecting the following restrictions: (1) each route must start and
finish at the distribution center; (2) each customer must be visited just only time
and (3) the sum of the customers’ demands included in a route cannot exceed
the vehicle’s capacity. According to Vieira [3] the CVRP can be mathematically
formulated as follows:

Minimize TC =

nc∑

i=0

nc∑

j=0,j 6=i

K∑

k=1

Cijxijk (1)

Subject to

K∑

k=1

nc∑

j=1

x0jk ≤ K (2)

nc∑

j=1

x0jk =
nc∑

j=1

xj0k = 1, k = 1, ...,K (3)

K∑

k=1

nc∑

j=0

xijk = 1, i = 1, ..., nc (4)

nc∑

j=0

xijk −
nc∑

j=0

xijk = 0, k = 1, ...,Ki = 1, ..., nc (5)

K∑

k=1

∑

i∈S

∑

j∈S
xijk ≤ |S| − v(S),∀S ⊆ V /{0}, |S| ≥ 2 (6)

nc∑

i=1

di
∑

i=0,j 6=i

xijk ≤ cv, k = 1, ...,K (7)

xijk ∈ {0, 1}, i = 1, ..., nc, j = 1, ..., nc, k = 1, ...,K (8)

where: di is the demand of customer i; k: vehicle; K: set of vehicles; S:
set of customers; nc: Number of customers; v(S): Minimum number of vehicles

248 sciencesconf.org:bioma2018:183905



to attend S; cv: Capacity of vehicles; cij : cost of the path from customer i to
customer j; TC: total cost of the routes; xijk: path from customer i to customer
j with vehicle k;

The Equation 2 ensures that K vehicles will be used, while the Equation
3 guarantees that each route has its beginning and ending at the distribution
center. Equation 4 defines that customers must be attended exactly one time and
the equation 5 keeps the flow ensuring that a vehicle arrives at a customer and
out of it, preventing that the route ends prematurely. The Equation 6 prevents
the formulation of routes that do not include the distribution center. In this
restriction, v(S) represents the minimum number of vehicles required to attend
a set of customers S. To ensure that the number of vehicles used to attend the
customers of set S is not less than v(S), the restriction 6 establishes, indirectly,
that the capacity of the vehicle is not exceeded. However, to let this explicit, the
Equation 7 is used to formulate the capacity restriction.

Finally, the Equation 9 is used to evaluate the solutions generated by GA.
It reflects the value of the objective function (OF ) or fitness and involves the
number of vehicles used in the solution, violated restrictions (Equations 2 to 7)
and the total cost of routes (Equation 1).

OF = TC + KWv + nrWr (9)

where: Wv is the weight assigned to the number of vehicles used in the solu-
tion; nr is the number of violated restrictions and Wr is the weight given to the
violated restrictions.

2.2 Genetic Algorithm (GA)

The GA is an evolutionary computational technique that simulates the mech-
anisms of natural selection, genetics and evolution. In the last decades it has
been employed in several applications to solve complex optimization problems.
Its bias is how much better an individual adapts to its environment, the greater
their chances of surviving and generating offspring [16]. A GA individual rep-
resents a solution to the problem being solved. Each individual is defined as a
chromosome, consisting of genes, which represent variables of the problem, and
each position of a gene is defined as an allele.

In GA, the crossover operation consists in recombination of genes from se-
lected individuals, responsible to reproduce descendants more adapted to the
next generation. After a certain number of generations, it is common to ocurr
the loss of population diversity, which results in the premature stopping of the
GA leading to local optimum solutions. To avoid this problem, the mutation is
applied at a given rate of individuals (usually by randomly changing the alleles),
aiming to change the characteristic of the genes [17].

Other concepts associated with GAs are:
Genotype: is related to the population in the computation space, in which

the solutions are represented to be easily understood and manipulated by com-
puters [18][19].

249 sciencesconf.org:bioma2018:183905



Phenotype: is related to the population in the real world solution space,
in which the solutions are represented to be interpreted in real world situations
[18][19].

Encoding and Decoding: in the most cases, the phenotype and geno-
type spaces are different. Encoding is an operation that transforms a solution
from the phenotype to genotype space, while decoding is responsible by trans-
forming a solution from the genotype to the phenotype space. The main ecoding
schemes are: Binary, Value (integer, float, string, etc), Permutation and Tree [19]
[20]. Since these operations are carried out repeatedly during the fitness value
calculation (evaluation) in a GA, they need to be simple and fast.

Fig. 2. Encoding/Decoding operations.

Based on the above explanation, it is observed that the encoding solution
scheme is an important step in the development of GA, since it is directly related
to the quality of the solutions found, as well as the computational time spent to
find them.

2.3 Some Recent Encoding Schemes Used in GA for Solving the
VRP and Its Ramifications

As observed in the recent literature, the most commonly used schemes for VRP
solution encoding are permutation and value (integer). Such representations can
be found, for example, in the works of Lu and Yu [9], Lau et al. [4], Lee and
Nazif [2], Bermudez et al. [5] and Lima et al. [14].

Lu and Yu [9] proposed a simple mixed encoding scheme (permutation and
integer), illustrated in Figure 3, which encapsulates a main chromosome (per-
mutation of costumers) and a ’subchromosome’ formed by integer values repre-
senting the number of customers on each route.

Fig. 3. Encoding scheme proposed by Lu and Yu [9].
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Lau et al. [4] adopted an encoding scheme similar to that presented in [9], for
the Multidepot VRP, in which the subchromosome (first chromosome positions)
represents the number of costumers that each vehicle must attend, as well as the
depot each vehicle will depart to make deliveries (see Figure 4).

Fig. 4. Encoding scheme proposed by Lau et al. [4].

It is important to note that in these cases additional mechanisms must be
used for route separation and also to bypass the problem of generating non-
feasible solutions after applying the crossover and mutation operators. However,
this latter mechanism is not clearly described in the above mentioned works.

Recently, Lima et al. [14] proposed a short binary encoding scheme for CVRP
in which the chromosome represents the set of customers that must be attended
by each vehicle, as can be seen in Figure 5, while the sequence for visiting the
customers is solved by the Nearest Neighbor algorithm.

Fig. 5. Binary encoding scheme proposed by Lima et al. [14].

In this encoding scheme the alleles with value of 1 indicate the customers
that will be attended by a vehicle, that is represented by each line of the binary
matrix.
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3 Materials and Methods

In the development of proposed encoding scheme, the programming language
C/C++ and GAlib library [21] were used. The GAlib is a free library widely
used for solving combinatorial optimization problems. For evaluating the pro-
posal, experiments were performed and the results obtained were compared with
the best results found in the literature for a set of instances extracted from
Christofides and TSPLIB libraries, with up to 30 customers.

In the experiments we employed a desktop computer with the following con-
figurations: Intel Celeron 2955U1.40 GHz processor; 4GB of RAM; Windows 7
Ultimate 32-bits operating system.

The following parameters (empirically defined) were employed by imple-
mented GA:
• Population Size = 1200;
• Number of Generations (used as stop criterion) = 5000;
• Population rate of replacement = 0.8;
• Elitism rate = 0.2;
• Crossover rate = 0.8;
• Selection Method = Roulette;
• Mutation rate = 0.01;
• Type of Mutation = Flip Bit.

4 Proposed Binary Encoding Scheme

The encoding scheme proposed in this work consists of a binary matrix of M =
nc ∗ 2 − 1 columns by K rows. The example shown in Figure 6 illustrates the
solution encoding of a CVPR instance that envolves nc = 7 costumers and K = 2
vehicles (as depicted in Figure 1). The first nc columns of each row indicate the
costumers to be served by a vehicle, while the last nc − 1 columns consist of a
vector that indicates the permutations to be made in a matrix of integers (Figure
7), called permutation matrix, representing the order that the costumers will be
visited by the K vehicles.

Fig. 6. Proposed binary encoding scheme for CVPR.

The permutation matrix (that can be understood as a seed) containing nc
columns and K rows, shown in Figure 7, is unique and must be generated before
the execution of GA using random permutations or some heuristic algorithm.
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Thus, when it is combined with a GA chromosome (indicating the costumers to
be visited and how the visitation order will be permuted), a solution for CVRP
is generated, as shown in Figure 8.

Fig. 7. Permutation matrix (seed).

Fig. 8. Combining a permutation matrix with a cromossome to generate a solution for
CVRP.

In summary, combining a unique seed with the GA chromosomes a set of
different solutions for the CVRP is generated, each one providing the set of
customers to be visited by each vehicle as well as the order they will be visited.

It is valid to mention that the encoding scheme described here was inspired
by the work of Grassi [22], who proposed a similar way to represent solutions
to the Job-shop Scheduling Problem (FJSP), and is very different from those
employed in the VRP solution found in the literature, including the schemes
described in section 2.3.

253 sciencesconf.org:bioma2018:183905



5 Experimental Results

To evaluate the proposed encoding scheme we executed the GA ten times for each
instance. Then, the results obtained were compared with the best solutions found
in the literature. To this end, we considered the optimal solutions presented by
Reinelt and Wenger [23] and by Ralphs et al. [24], respectivelly, for instances
extracted from Christofides and TSPLIB.

The quality of obtained solutions was evaluated by a measure known as GAP,
which is widely used in the literature to express how far the result obtained for
a problem is from the best result reported in the literature for that problem. In
our case, GAP = (OF −OFBest)/OFBest, being OF the best value of objective
function (Equation 9) obtained in the 10 executions of GA and OFBest the
best solution found in the literature. In addition, we present in Table 1 results
considering the population initiated in a random way (GA) and including in it
a feasible solution generated by Gillet & Miller heuristic (GA+GM).

Table 1. Experimental results of proposed Scheme.

Instance OFBest GA GAP% GA+GM GAP% Time (s)

Eil7 114 114 0.00% 114 0.00% 30

Eil13 290 316 8.97% 308 6.21% 50

Eil22 375 472 25.87% 376 0.27% 100

Eil23 875 1025 17.14% 903 3.20% 110

Eil30 545 840 54.13% 750 37.61% 150

P-n16-k8 450 520 15.56% 462 2.67% 60

P-n19-k2 212 284 33.96% 255 20.28% 70

P-n20-k2 216 270 25.00% 255 18.06% 80

P-n21-k2 211 249 18.01% 229 8.53% 90

P-n22-k2 216 338 56.48% 268 24.07% 100

P-n22-k8 590 722 22.37% 618 4.75% 100

P-n23-k8 529 675 27.60% 574 8.51% 110

E-n13-k4 247 306 26.89% 302 22.27% 50

E-n22-k4 375 462 23.20% 390 4.00% 100

E-n23-k3 569 892 56.77% 690 21.27% 110

E-n30-k3 534 880 64.76% 687 28.65% 150

Average GAP% - - 29.6% - 13.14% -

As shown in Table 1, the proposed scheme provided good performance re-
garding the quality of the solutions. Considering the results of GA+GM, the
GAP in most cases (except for instances ”Eil30” and ”E-n30-k3”) did not ex-
ceed 25%, being that for 56% of tested instances the GAP was less than 10%.
Still analyzing the GAP, the average value did not exceed 14%, highlighting the
good performance of our proposed approach.

With respect to computational cost, as can be seen in Table 1, the processing
time ranges from 30 s for the smallest instance (”Eil7”) to 150 s for larger
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instances (”Eil30” and ”E-n30-k3”). In addition, the results showed that the
use of Gillett & Miller heuristic to generate a feasible solution in the initial
population helps the GA to converge quickly to promising points in the search
space, generating solutions with good quality. It should be noted that the average
time spent in the execution of the Gillett & Miller algorithm was on average 1.7
s, which shows that it does not compromise the computational cost of GA.

Despite the good results obtained by our approach, many improvements can
still be made in the proposed encoding scheme, such as: the use of more than one
seed (matrix of permutation), the use of local search operators (k-opt, OR-opt,
k-Point Move and Cross-Exchange) and also by incorporating some local search
algorithm to refine the solutions generated by GA.

6 Conclusions

In this work we presented a new binary encoding scheme for GA to solve
the CVRP. From the computational experiments carried out with instances of
Christofides and TSPLIB, it was possible to conclude that the proposed scheme
provided good results considering the computational cost and the quality of so-
lutions. In addition, it was found that the chromosome representation is suitable
to met the specific characteristics of the CVRP, besides it is simple to interpret
and adapt. The experiments also pointed out that the use of Gillett & Miller
heuristic helped the convergence of GA to promising points in the search space.
In future works some improvements in the proposed scheme will be investigated,
such as: i) the use of Clarke and Wright heuristic to generate feasible solutions
to be injected into the initial population of the GA; ii) the use of local search
operators (k-opt, OR-opt, k-Point Move and Cross-Exchange), aiming to gen-
erate different solutions from the same seed; iii) incorporate some local search
algorithm to refine the solutions generated by GA and iv) apply the proposed
scheme in a large number of instances found in the literature, in order to evaluate
the applicability of our approach in real scenarios.
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Abstract. Currently, it has been verified that population is increasingly
aged and it is necessary to perform home services. These services include
home care visits to patients with impossibility of travel to healthcare
centers, where the health professionals perform the medical treatments.
Usually, this home care services are performed by nurses that need trans-
portation for this purpose. Therefore, it is necessary to make a schedule
of these home care visits that, usually, is made manually by the health-
care center. This work aims to carry out an automatic schedule of home
care visits of the healthcare Center of Bragança, Portugal, in order to
reduce the travel costs and optimize the time spent on trips. The Genetic
Algorithm was used to solve this problem. In this paper it is presented
the schedule of home care visits for three days of the healthcare center.

Keywords: optimization, schedule, home care, genetic algorithm

1 Introduction

Home Health Care (HHC) is increasingly important for the current society [1].
In Portugal, for example, there is a high number of older people that need support
on theirs homes, so the home health care services are very important on these
cases. For many of these people it is impossible to travel to hospitals, healthcare
centers, laboratories, among other health services, due to many reasons, for
example, their limited mobility, the high distance of health local, or even their
homes are in isolated areas without public transportation. Thus, the Home care
services are performed by the National Health System since it is economically
advantageous to keep people at home instead of providing them a hospital bed
[2]. So, these elderly/sick people need to perform the necessary treatments in
their homes, so the health professionals need to travel to patients’ residences to
perform all the requested treatments [3].

To solve this issue, it is necessary to analyze the support needed for home care
services to better perform the management of these services. According to stu-
dies already carried out, optimization strategies contributes to improve the Home
Health Care services in many different ways [4–6]. Some reviews highlight a large
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number of papers from the Operational Research community and their main
subject is the optimization of the daily planning of health care services. Recently,
Nickel et al. [2] propose a heuristic to address the medium-term and short-term
planning problem. In the literature, the routing problem is largely tackled as
a ”Travelling Salesman Problem (TSP)” approach for designing the caregivers
route using MILP [7] and/or heuristic [8] approaches for a static, deterministic
problem. In this context, the Portuguese public health system includes two types
of units: Hospitals and Healthcare Centers. The Healthcare Centers are closer to
the population since they follow up their patients, continuously, and the home
care services are performed by nurses teams of these units. The aim of this work
consists in solving a common problem of Healthcare Centers: produce a daily
vehicles schedule of a Healthcare Center where the health professionals (nurses)
spent the minimum time to perform all home care visits (considering the travel
and treatment patient time).

The paper is organized as follows: Sect. 2 gives a global framework, the
description of the real problem and its formulation, and presents the real data
collected. The Sect. 3 presents the Genetic Algorithm, the global method chosen
to solve the problem. The numerical results are presented in the Sect. 4. Finally,
the last scheduling presents the conclusions and future work.

2 Global Framework and Problem Definition

In this context, the global architecture of the HHC system must integrate com-
putational support. Thus, the problem was solved sequentially using the archi-
tecture presented in Figure 1.

Fig. 1. Developed Architecture

The first step (1), allows to connect the computational support with the
informations from Health Unit, in particularly, the list of patients, human and
physical resources, among other data, allow to obtain the planning of routes for
a certain day of work, that is, the optimal route, instead the manual scheduling.

The second step (2) places the optimized routes into action, allowing the
reduction of time spent and reduction of costs for the service.
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The Healthcare Centers have a set of vehicles that are used to perform home
care visits by the nurses. The Healthcare Center of Bragança (HCB) has, at
maximum, five vehicles to perform home care visits for each day. Currently, the
vehicles schedule of the HCB is done manually. So, the aim of this work is to
produce a vehicles schedule in order to obtain the minimum total spent time to
perform all home care visits by the nurses of HCB.

To solve this problem, and considering the information given by HCB, it was
considered:

– 15 minutes for the trip, in the same city or locality, to visit different patients.
– The trips duration between the different locations is known.
– The list and the duration of the treatments are known for each patient

(defined and given by Health National Unit).
– The number of patients that need home care, and assigned to a working day,

is known in advance and does not change during that day.
– Patients care activities cannot be performed at the same time or overlap.
– All trips begin and end up at the Healthcare Center.

2.1 Problem Formulation

Taking into account all the above information for a working day, it was also
considered the following parameters for a given day: NP represents the total
number of patients that need of home care and NC is the total number of
vehicles used for home care visits. Other general information is needed to obtain
the final formulation, such us:

– The locations of all patients.
– The time matrix that presents the travel time needed between different lo-

cations.
– Vehicles that perform home care visits is known in advance.
– The vehicle characteristics (in the same vehicle, the maximum number of

travel persons is seven, hence can transport more than one team).
– Each vehicle carries nurses responsible for certain activities. Therefore, there

is no interchangeability among caregivers for care activities.
– In general, each patient will be visited by a specific nurse. In some specific

cases, a set of patients can be visited by the same nurse (explained later).

Consider the vector x = (p1, ..., pNP , c1, ..., cNP ) where the patient pi will

be visited by the vehicle ci, for i = 1, ..., NP , and x ∈ {1, · · · , NP}NP ×
{1, · · · , NC}NP

.
For a given x it is possible to define the vehicles schedule and the function

Sl(x), l = 1, .., NC, that represents the total time needed to perform all visits
of the vehicle l, considering the vector x. The objective function is defined as

f(x) = max
l=1,...,NC

Sl(x) (1)
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which represents the maximum time spent by all vehicles to perform all the
visits. Then the constrained optimization problem will be defined as

min f(x) (2)

where x = (p1, ..., pNP , c1, ..., cNP ) with pi ∈ {1, ..., NP} and cj ∈ {1, ..., NC};
all the patients need to be treated ∪Pi=1pi = {1, ..., NP} and the number of
nurses in each vehicle trip is less or equal to seven.

To solve the minimization problem presented previously, Genetic Algorithm
(GA) was used and it is presented in Sect. 3.

2.2 Real Data

The Healthcare Center of Bragança provided three typical working days in April
2016. The data used were available by the Healthcare Center of Bragança (chosen
by the institution and simulated a normal working day). In these days, the HCB
had:

– On the day 1 - 4 vehicles available to perform the home care visits, 31 patients
who require home-based treatments from 12 different locations.

– On the day 2 - 5 vehicles available to perform home care visits, 25 patients
who require home-based treatments from 5 different locations.

– On the day 3 - 5 vehicles available to home care visits, 22 patients who
require home-based treatments from 9 different locations.

The home care services provided by the nurses, can be classified into five different
treatments (or home care visits) presented in Table 1. This information was
provided by HCB, where the number of treatment was assigned depending on
the type of treatment, described in Table 1.

Table 1. Full characterization of the different treatments provided by the nurses

Treatment Description Characterization Time (min)
1 Curative Treatments, for example, pressure ulcer,

venous ulcer, surgical wounds, traumatic
wounds, ligaments, remove suture mate-
rial, burns, evaluation and dressing of
wound dressings

30

2 Surveillance and Rehabilitation Evaluation, implementation and patient
monitoring

60

3 Curative and Surveillance Wound treatment, watch over bandage,
frequency and tension monitoring, teach
and instruct the patient of the complica-
tions and pathologies

75

4 Surveillance Assess risk of falls, self-care, patient be-
haviors and still the providers knowledge.
Monitor, height, tension and heart rate.
Patients dietary and medical regimen

60

5 General Evaluate, support and teach about
mourning

60
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Analyzing the Table 1, it is verified that the treatments are different and
have different times between them. Each of these treatments will be considered
for each patient according to the needs (information provided by the Health
Center). It becomes necessary to know all the locations of all the patients for
the vehicles scheduling.

Table 2 presents all patients locations for the three days (and the correspond-
ing abbreviation) and the spent time between two locations (in minutes). As it
was stated before, it was assigned 15 minutes to travel at the same location.

Table 2. Data about travel times between different locations (in minutes)

A Bg B C Cl E G M Ml Mo O P Pi Rl Rb Rd S Sm Sd Sp
Alfaião (A) 15 24 16 28 35 25 16 22 21 18 20 29 25 21 26 18 24 15 30 32
Bragada (Bg) 24 15 22 33 30 31 27 34 31 16 30 26 15 32 15 19 15 20 16 17
Bragança (B) 16 22 15 25 33 17 16 16 18 16 17 29 23 18 25 15 23 15 29 31
Carrazedo (C) 28 33 25 15 44 24 31 39 39 26 38 39 32 35 33 23 34 24 37 42
Coelhoso (Cl) 35 30 33 44 15 42 38 44 29 19 19 17 17 43 31 29 29 30 36 21
Espinhosela (E) 25 31 17 24 42 15 24 18 34 25 33 37 32 26 34 24 32 25 37 40
Gimonde (G) 16 27 16 31 38 24 15 20 18 21 22 32 29 19 29 21 27 17 33 35
Meixedo (M) 22 34 16 39 44 18 20 15 31 27 29 40 35 17 37 27 34 23 39 42
Milhão (Ml) 21 31 18 39 29 34 18 31 15 23 15 36 31 27 33 27 31 21 36 39
Mós (Mo) 18 16 16 26 19 25 21 27 23 15 24 15 16 26 15 16 19 15 18 21
Outeiro (O) 20 30 17 38 19 33 22 29 15 24 15 27 31 27 32 26 30 20 36 38
Parada (P) 29 26 29 39 17 37 32 40 36 15 27 15 19 38 27 25 25 36 31 23
Pinela (Pi) 25 15 23 32 17 32 29 35 31 16 31 19 15 34 15 20 16 21 21 19
Rabal (Rl) 31 32 18 35 43 26 19 17 27 26 27 38 34 15 34 24 32 22 38 40
Rebordáınhos (Rb) 26 15 25 33 31 34 29 37 33 15 32 27 15 34 15 22 16 20 19 20
Rebordãos (Rd) 18 19 15 23 29 24 21 27 27 16 26 25 20 24 22 15 20 15 25 28
Salsas (S) 24 15 23 34 29 32 27 34 31 19 30 25 16 32 16 20 15 20 15 15
Samil (Sm) 15 20 15 24 30 25 17 23 21 15 20 36 21 22 20 15 20 15 26 28
Sendas (Sd) 30 16 29 37 36 37 33 39 36 18 36 31 21 38 19 25 15 26 15 17
Serapicos (Sp) 32 17 31 42 21 40 35 42 39 21 38 23 19 40 20 28 15 28 17 15

The values presented in Table 2 are based on the data provided by the HCB.
As mentioned previously, it is also necessary to know the treatments list of the
patients for the three days in study.

The list of treatments for each patient on days 1, 2 and 3, is:

– Day 1: the patients 1, 2, 3, 4, 8, 9, 10, 11, 12, 13, 14, 17, 19, 22, 23 and
24 need treatment 1, the patients 5, 6 and 7 need treatment 2, the patient
15 and 20 requires treatment 3, the patients 16, 21, 25, 26, 27, 28, 29, 30
and 31 need treatment 4 and the patient 18 requires treatment 5. There are
some patients that have the same nurse. It is the case of patient 11 and 13;
patient 4 and 22; patient 17 and 23; and patient 1 and 12.

– Day 2: the patients 3, 16, 17, 21, 22, 23, 24 and 25 need treatment 1, the
patients 2, 8, 9 and 11 need treatment 2, the patients 4, 5, 10, 12, 13, 14,
15 and 18 need treatment 3, the patients 1, 19 and 20 requires treatment 4
and the patients 6 and 7 need treatment 5. In this day there are two pairs
of patients that have the same nurse, that is the case of patient 3 and 16;
and patient 21 and 25.
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– Day 3: the patients 1, 2, 3, 6, 7, 8, 9, 17, 21 and 22 need treatment 1, the
patients 4 and 5 requires treatment 2, the patients 13 and 14 need treatment
3, the patients 11, 12, 15, 16, 18, 19 and 20 need treatment 4 and the patient
10 requires treatment 5. The patients 16 and 18 must be visit by the same
nurse.

Based on all the presented data, the main objective is to obtain the vehicles
schedule, in order to minimize the total spent time needed to perform the trips,
the treatments and return to the starting point, HCB.

3 Genetic Algorithm

Initially proposed by John Holland [9], GA inspired by the natural biological
evolution, uses a population of individuals to apply genetic procedures: crossover
between two different individuals or/and mutation in one individual.

The values of the control parameters used in GA were adjusted to a suitable
experience of the problem, i.e. it was considered a population size (Ps) and
concerning the probability of the procedures (crossover and mutation), 50% rate
was selected. Is expected that the following population (next generation) of
individuals has a better capability. The algorithm repeats the crossover and
mutation procedures in new populations until the desired diversity of solutions
is performed [10, 11].

The method applied in this work is summarized by the following Algorithm.

Algorithm 1 : Genetic Algorithm

1: Generates a randomly population of individuals, P0, with dimension Npop. Set
k = 0.

2: while stopping criterion is not met do
3: Set k = k + 1.
4: P ′ = Apply crossover procedure in population Pk.
5: P ′′ = Apply mutation procedure in population Pk.
6: Pk+1 = Npop best individuals of {Pk ∪ P ′ ∪ P ′′}.
7: end while

Details related to the algorithm implementation can be seen in [12]. The
iterative procedure terminates after a maximum number of iterations (NI) or
after a maximum number of function evaluations (NFE).

4 Numerical Results

The HCB also provides us the vehicles schedule, performed manually, that is,
without any mathematical model or subject to computational mechanisms. Thus,
for the days 1, 2 and 3, respectively, will be presented in the Tables 3, 4 and 5.
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Table 3. HCB Schedule for day 1

Vehicles Scheduling in the Health Unit
Vehicles

1 HCB - B P(1) - T.1 B - P P(2) - T.1 P - B P(3) - T.1
P(4) - T.1 P(5) - T.2 B - Rb P(6) - T.2 Lunch Rb - B
P(7) - T.2 B - M P(22) - T.1 M - B P(12) - T.1 P(24) - T.1

B - Bg P(25) - T.4 Bg - HCB
2 HCB - C P(8) - T.1 C - E P(9) - T.1 E - B P(10) - T.1

B - Rd P(11) - T.1 Rd - B P(13) - T.1 B - S P(14) - T.1
S - HCB Lunch

3 HCB - B P(15) - T.3 B - Sp P(16) - T.4 Sp - P P(17) - T.1
P - B P(18) - T.5 Lunch B - O P(19) - T.1 O - B

P(20) - T.3 P(21) - T.4 P(23) - T.1 B - HCB
4 HCB - B P(26) - T.4 P(27) - T.4 P(28) - T.4 P(29) - T.4 Lunch

B - MI P(30) - T.4 P(31) - T.4 MI - HCB

Table 4. HCB Schedule for day 2

Vehicles Scheduling in the Health Unit
Vehicles

1 HCB - B P(1) - T.4 P(8) - T.2 P(19) - T.4 B - HCB Lunch
2 HCB - B P(2) - T.3 B - Rd P(4) - T.3 Rd - G P(5) - T.3

Lunch G - B P(6) - T.5 P(7) - T.5 B - HCB
3 HCB - CI P(9) - T.2 P(10) - T.3 P(11) - T.2 P(12) - T.3 Lunch

P(13) - T.3 P(14) - T.3 P(15) - T.3 CI - HCB
4 HCB - B P(16) - T.1 P(17) - T.1 P(18) - T.3 P(20) - T.4 B - G

P(23) - T.1 Lunch G - B P(3) - T.1 B - HCB
5 HCB - RI P(21) - T.1 RI - B P(22) - T.1 P(24) - T.1 B - Rd

P(25) - T.1 Rd - HCB Lunch

Table 5. HCB Schedule for day 3

Vehicles Scheduling in the Health Unit
Vehicles

1 HCB - B P(1) - T.1 P(2) - T.1 P(3) - T.1 P(19) - T.4 P(20) - T.4
B - HCB Lunch

2 HCB - E P(4) - T.2 E - B P(5) - T.2 P(6) - T.1 P(7) - T.1
B - Rd P(8) - T.1 Rd - HCB Lunch

3 HCB - P P(9) - T.1 P - Rd P(10) - T.5 Rd - A P(11) - T.4
P(12) - T.4 A - HCB Lunch

4 HCB - B P(13) - T.3 B - Sm P(14) - T.3 Sm - B P(15) - T.4
P(16) - T.4 Lunch B - Sd P(18) - T.4 Sd - HCB

5 HCB - Sd P(17) - T.1 Sd - Mo P(21) - T.1 Mo - MI P(22) - T.1
MI - HCB Lunch
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It was presented the real vehicles schedule used in the reference working
days to compare the improvement. Each patient is visited by one nurse. In some
specific situations there are a set of patients that will be visit for the same nurse
(as was described previously). It is also possible to conclude that the maximum
spent time by the vehicles was 694, 651 and 448 minutes for each day (without
the lunchtime), respectively, as show Table 3, 4 and 5.

Regarding the identification of patients and treatments, P(1) - T.1 represents
Patient 1 who needs Treatment 1. For example, the schedule of the vehicle 1 for
day 3 will be: begin the trip in HCB to Bragança to execute the home care visit
of Patients 1, 2, 3, all with treatment 1, and then, still in the same locality, visits
patient 19 and 20 (both need treatment 4). Finished, return to HCB for lunch.

For the computational results it was used the Matlab Software, version 2015a,
running in a computer with a processor Intel (R) Core (TM) i5 2.40GHz CPU
with 4.0 GB of memory RAM.

In this work, the Genetic Algorithm (GA) was used to produce the vehicles
schedule with the minimum spent time (not considering the lunchtime). For the
population size, it was considered Ps = 30 individuals, the maximum number
of function evaluation was fixed at NFE = 5000 and the maximum number of
iterations as NI = 100.

Since GA is a stochastic method, it was performed 100 runs to solve the
problem. Table 6 presents the GA overall performance, such as: the best solution
obtained in all runs (f∗

min), the solution average (f∗
avg), and finally, the average

time to solve the optimization problem (Timeavg) in seconds.

Table 6. Summary of GA results

f∗min f∗avg Timeavg

Day 1 545 573 24
Day 2 498 510 20
Day 3 333 333 15

Analyzing the numerical results presented in the previous table, it is possible
to verify that the total total time found by GA for the different days, is less than
the times planned manually. The first solution with the shortest total time was
chosen as the final result. The average of the solutions is slightly higher in the
first two days and the same on the third day, that is, optimized planning has
almost always been found. In each run was always found solutions. Finally, the
average time to solve the problem was always less than 24 seconds, i.e. very fast.

Consequently, the GA obtains the vehicles schedule for each working day.
The Table 7 presents the vehicle schedule obtained by the algorithm for day 1.
It is possible to conclude that the maximum spent time is 545 minutes.

In our problem only the effective time spent with the home care visits is
considered by the Healthcare Center, excluding lunchtime. The same happens
for the remaining computational results.
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Table 7. Optimal vehicles schedules using GA for day 1

Vehicles Schedule using GA
Vehicles

1 HCB - B P(10) - T.1 P(12) - T.1 P(1) - T.1 P(15) - T.3 B - Rb
P(6) - T.2 Lunch Rb - P P(2) - T.1 P - B P(29) - T.4
P(26) - T.4 B - HCB

2 HCB - B P(21) - T.4 P(5) - T.2 B - P P(17) - T.1 P - B
P(23) - T.1 P(3) - T.1 Lunch B - MI P(31) - T.4 MI - E
P(9) - T.1 E - C P(8) - T.1 C -HCB

3 HCB - B P(28) - T.4 P(20) - T.3 B - M P(22) - T.1 M - B
P(4) - T.1 P(27) - T.4 Lunch B - Bg P(25) - T.4 Bg - B
P(18) - T.5 B - HCB

4 HCB - MI P(30) - T.4 MI - B P(7) - T.2 B - Sp P(16) - T.4
Sp - B P(24) - T.1 Lunch B - Rd P(11) - T.1 Rd - B

P(13) - T.1 B - S P(14) - T.1 S - O P(19) - T.1 O - HCB

For the day 2, it was obtained the vehicles schedule presented in Table 8,
that has 498 minutes to perform all the home care visits.

Table 8. Optimal vehicles schedules using GA for day 2

Vehicles Schedule using GA
Vehicles

1 HCB - CI P(14) - T.3 P(11) - T.2 P(15) - T.3 CI - B P(19) - T.4
Lunch P(17) - T.1 B - HCB

2 HCB - B P(1) - T.4 P(7) - T.5 P(20) - T.4 B - CI P(12) - T.3
CI - HCB Lunch

3 HCB - G P(5) - T.3 G - B P(24) - T.1 B - CI P(10) - T.3
CI - B P(6) - T.5 Lunch B - CI P(13) - T.3 CI - HCB

4 HCB - B P(8) - T.2 P(3) - T.1 P(16) - T.1 B - Rd P(4) - T.3
Rd - B P(18) - T.3 B - HCB Lunch

5 HCB - RI P(21) - T.1 RI - Rd P(25) - T.1 Rd - B P(2) - T.3
B - CI P(9) - T.2 CI - G P(23) - T.1 Lunch G - B

P(22) - T.1 B - HCB

Finally, for the day 3 was collected a vehicles schedule with a maximum time
spent by vehicles of 333 minutes, as it is possible to see in Table 9.

In order to conclude and for a better perception of the illustrated results, it
will be presented the following example of home visits made by vehicle 1 on day
3. Thus, the vehicle 1 starts the route at the Healthcare Center (HCB) to Parada,
provides care to Patient 9 (Treatment 1), then travels of Parada to Bragança,
to provide care to Patient 19 (Treatment 4). After travel to Alfaião, takes care
of Patient 11 (Treatment 4) and then travels again to Sendas to provide care
to Patient 17 (Treatment 1). Finally, returns of Sendas to the point of origin
(HCB) to end the home visits and have the lunchtime.
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Table 9. Optimal vehicles schedules using GA for day 3

Vehicles Schedule using GA
Vehicles

1 HCB - P P(9) - T.1 P - B P(19) - T.4 B - A P(11) - T.4
A - Sd P(17) - T.1 Sd - HCB Lunch

2 HCB - B P(20) - T.4 B - Rd P(10) - T.5 Rd - A P(12) - T.4
A - B P(6) - T.1 P(7) - T.1 B - HCB Lunch

3 HCB - B P(2) - T.1 B - Rd P(8) - T.1 Rd - B P(1) - T.1
B - MI P(22) - T.1 MI - B P(13) - T.3 B - HCB Lunch

4 HCB - Mo P(21) - T.1 Mo - E P(4) - T.2 E - Sm P(14) - T.3
Sm - B P(5) - T.2 B - HCB Lunch

5 HCB - B P(15) - T.4 B - Sd P(18) - T.4 Sd - B P(16) - T.4
P(3) - T.1 B - HCB Lunch

Table 10 presents a comparison of the the maximum time spent by each
vehicle, using GA, and the time provided by the HCB.

Table 10. Maximum time spent (minutes) by each vehicle on home care visits

Vehicles
Day 1 Day 2 Day 3

HCB 694 651 448
GA 545 498 333

Comparing the results with the vehicles schedule provided by the HCB it is
possible to conclude that the GA obtained vehicles schedule with a reduction
(approximately 30%) of the maximum spent time to perform all the home visits.

The numerical results show more than an optimal solution, needing a few
seconds for find them. GA, had 100% of successful rate since they found a feasible
solution in all runs. While the manual process takes a long time, since they are
complex cases and without optimization tests, it is possible to verify that the
average time to solve the problem is quickly and allows several solutions.

5 Conclusions and Future Work

The home care visits are usually planned manually and without any computer
support in HCB, this implies that the solution obtained may not be the best one,
in addition to the process being complex and taking a higher time consuming. So,
in an attempt to optimize the process, it is necessary to use strategies to minimize
the maximum time spent by each vehicle on home care routes, without, however,
worsening the quality of the provided services and, always, looking for the best
schedules organization. In this paper, the scheduling problem of HCB was solved
successfully using GA method, needing few seconds to find the problem solution.

267 sciencesconf.org:bioma2018:183913



This approach represents a gain for all entities involved, as health professio-
nals and patients.

For future work, it is possible to reformulate the problem and take into
account the multi-objective approach to minimize the total time spent by all ve-
hicles. Another approach may be the use of multi-agent for real-time simulation.
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Abstract. The ionizing radiation is used in the nuclear medicine field
during the execution of diagnosis exams. The administration of nuclear
radio pharmaceutical components to the patient contaminates the envi-
ronment. The main contribution of this work is to propose a path plan-
ning method for scanning the nuclear contaminated environment with a
mobile robot optimizing the traveled distance. The Genetic Algorithm
methodology is proposed and compared with other approaches and the
final solution is validated in simulated and real environment in order to
achieve a closer approximation to reality.

Keywords: Genetic Algorithm, Mobile Robot, Path Planning, Opti-
mization

1 Introduction

Medical imaging is an area of knowledge with continuous technological innova-
tion, that develops new techniques for the medical diagnosis in order to provide
an image of the anatomy of the human body and its functions [1]. According
to NUMDAB (Nuclear Medicine Database), there are 1490 nuclear medicine
institutions in the world, of which 1288 are active. Actually, 0.69 million PET
(Positron Emission Tomography) and PET-CT (Computed Tomography) annual
examinations are registered in the world [2].

The nuclear medicine provides diagnosis tests that detect with some precision
when a certain part of the body has a change in the metabolism. The adminis-
tration of nuclear radio pharmaceutical components to the patient must be care-
fully done by specialists. Unfortunately, the patient can contaminate the envi-
ronment with physiologic needs. Moreover, environment and the patient should
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be isolated by a period of time regarding the decay of nuclear properties. The
inspection of the clearance of the environment is mainly made by human beings
that are exposured to the ionizing radiation that may cause the damage in the
organs and tissues. The scanning and measurement of the radiation can be done
resorting to a mobile robot that performs the acquisition based on a Geiger
counter. The path planning of the robot should guarantee that the complete
scan is performed and ensure the environment is clean and technicians can enter
the room. The presented paper addresses a path planning method that scans
the desired environment while optimizing the mobile robot travelled distance.
This optimization, based on Genetic Algorithm, is implemented in simulation
and real robot scenario and compared with other approaches that validates the
proposed methodology.

The paper is organized as follows: After a brief introduction, Section 2
presents the related work. Then, Section 3 addresses problem formulation of
path planning to scan the environment. Section 4 presents the developed Ge-
netic algorithm and its operations. Section 5 presents the obtained numerical
results and compares it with a heuristic method for path planning. Finally, last
section concludes the paper and presents some future work.

2 Related Work

Path planning is crucial for autonomous mobile robots in various environments
with the presence of obstacles [3]. In the literature, path planning is defined as:
“Given a map and a goal location, path planning involves identifying a trajectory
that will cause the robot to reach the goal location when executed. Path planning
is a strategic problem-solving competence, as the robot must decide what to do
over the long term to achieve its goals” [4].

This subject is widely discussed by the academic community. The task of
moving the robot from a starting point to a target point avoiding obstacles and
running an optimized or near optimal path is a complex computational process.
Complexity increases as the environment has more known, unknown or dynamic
obstacles.

Several algorithms are used for the mobile robot path planning problem,
e.g, visibility chart [5], Voronoi diagrams [6, 7], cell decomposition [8], potential
field [9], A* [10] and other methods found in the literature. According to [3]
“Each method differs in its effectiveness depending on the type of application
environment and each one of them has its own strength and weaknesses”.

Another approach used in the search to optimize path planning is based
on Genetic Algorithms [3, 11–14]. In [3] this methodology was used with search
algorithm to carry out the path planning of starting point and end point avoiding
obstacles and collisions in the environment (static or dynamic where was used
an optimization in the mutation operator to optimize the path or seek a path
near the optimum). Already in [12], applying crossover and mutations to search
for an optimized path, using a connectivity grid to represent the plant where
the robot is inserted, the objective is to find the lowest path between the start
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and end points, avoiding repeating cells along the way, simplifying the fitness
function by analyzing path length.

Many approaches in path planning, even using Genetic Algorithm, seek only
to make the shortest, or most efficient, path between two distinct points (start
and target). However, our problem has a different framework, similar to the
classic travelling salesman problem (TSP). Considering a range of n cities where
the purpose of this problem is to start the route in city defined, visiting the
other cities only once, and them returning to the first city [15]. Considering
the possibility of the existence of several cities, the TSP becomes complex with
(n − 1)! possible routes to be calculated. The differences between our problem
and the travelling salesman’s problem is that the starting and ending points are
different and the robot must avoid collision with obstacles.

In the present work, we will adapt a Genetic Algorithm to find the smallest
path to perform a scan in the environment represented by a connectivity grid.
An example with this applicability is found in [16,17] works. We will initially res-
trict the problem to static environments, and future work will address dynamic
environments where there are unknown obstacles by the robot.

3 Problem Formulation

The challenge of path planning for robots is usually formulated as follows: given
a mobile robot and a description of an environment, we need to find a route
between two specified locations, the start and the end point. During the execu-
tion of the path the robot can not collide with obstacles and the optimization
criterion must be satisfied (i.e., shortest path) [13].

To simplify the path planning problem, it is necessary to make some assump-
tions. They are as follows:

– A path will be selected, always starting from a start point to a target point,
as show in Fig. 1.

– Known obstacles are mapped and represent a cell in the connectivity grid.
– The proposed algorithm acts on a connectivity grid arranged in a two di-

mensional space (2D) or IR2 space.
– The robot does not perform movements in diagonal directions. It only moves

between interconnected points in horizontal and vertical directions in the grid
of connectivity, as show in Fig. 1.

– The robot should visit all cells, or points, that are free of obstacles in the
grid of connectivity at least once.

3.1 Problem Space Representation

Many works developed in the area of path planning for mobile robots, use a
graph grid of connectivity to represent the environment and obstacles. In the
present work we use a similar approach as presented in the papers [3,14], where
we modify the order of the values as shown in Fig. 1. The dark color represents
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Fig. 1: Connectivity grid (5x5) and an example of possible points and segments.
Without an obstacle the 12 point will be a reachable point.

obstacles, while the lighter colors represent obstacle-free cells. It is important to
remind that the size of the connectivity grid can vary, according to the resolution
of the desired scan.

4 Genetic Algorithm

In this section we will present the Genetic Algorithm (GA) used to solve the path
planning problem described in the section above. To facilitate understanding,
when referring to a gene, we are indicating a cell in the grid of connectivity.
When a chromosome is pronounced, it indicates a set of cells that connects the
start point to the end point.

4.1 Encoding Representation

The encoding method is one of the key steps in the GA design. The representation
of the possible paths to be realized by the robot, is known as chromosome [3,11,
14]. The path is encoded in a sequence of adjacent cells. This sequence is started
with the start cell (upper left corner) and ended with the destination (bottom
right corner) cell. The path consists of a variable number of segments formed
between two cells or waypoints. Each segment is a straight line which can be
vertical or horizontal. Diagonal segments are invalid. Figure 2 shows a possible
chromosome generated from the connectivity grid of Figure 1.

Fig. 2: Possible chromosome of the GA initial population.
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4.2 Initial Population

The initial population is generated in order to respect the criteria of horizontal
and vertical movement allowed. The initial population is composed by a set of
chromosomes that are subjected to a random process, where each chromosome
starts at the start point and ends at the target point (see Fig. 1 and Fig. 2), and
each chromosome describes a path that should visit all the points of the grid of
connectivity at least once.

With the intention to reducing the search time of the evolutionary algorithm,
all the chromosomes generated by the initial population represent an executable
path, as in the papers [3, 14,18].

To generate a chromosome of the initial population, the algorithm applies a
mask with an unitary cross as shape, where the center represents the current
point and the extremity of the cross represents the directions allowed for the
path. Each direction has a probability of choice according to the amount of
visits already undertaken. In other words, a point that was less visited is more
likely to be visited compared to its neighbors that were most visited. In this
way, all points have a probability of being chosen, guaranteeing a great diversity
for the initial population. The mask can be seen in Fig. 3a, where the possible
configurations are also shown depending on the availability of neighboring points
or in case the mask is centered at the end of the grid.

(a) All direc-
tions available.

(b) Three di-
rections avail-
able.

(c) Two di-
rections avail-
able.

(d) One Di-
rections Avail-
able.

Fig. 3: Geometry of the mask for the generation of the initial population.

The probability of each direction Probi, for i = 0, ..., 3, is a function of the
visit cell number (ai) and n, that represents the number of available directions.
Probi, for i = 0, ..., 3, can be defined as:

Probi =





∑n−1
k=0 ak − ai

(n− 1) ·∑n−1
k=0 ak

, for n > 1

1, for n = 1

(1)

The procedure ends when all cells are visited and the path terminates at the
end point of the connectivity grid.
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4.3 Crossover Operation

Crossover can be defined as a process of taking two parent solutions to pro-
duce a child. After reproduction process, the population is enriched with better
individuals. The goal of the operator is to find new structures that have a high
probability of causing significant improvements [19].

In the developed algorithm, the crossover consider two parents, selected ran-
domly, to produce two children. The first step of this process is to generate the
characteristic path of these two selected parents. The characteristic path is a
sequence of cells that are visited for the first time in the path. In this way, in-
dividual and distinct information is stored for each parent. Each characteristic
path must begins at the starting point and ends at the endpoint (even if the
endpoint was previously visited).

Between two consecutive cells of the characteristic path there may be several
cells in the parent chromosome, which were already visited. Fig. 4a illustrates a
situation where two characteristic paths are generated for two parents, where a
3× 3 grid was used to facilitate the understanding of this operation.

(a) Characteristic path. (b) Generation of new chromosomes.

Fig. 4: Crossover operation details.

Only the garbage ranges can be used to generate the new chromosomes (off-
springs). Therefore a random point of the characteristic path is selected (in yel-
low in (a) and green in (b)), where between it and its subsequent point there is
garbage to be replaced by the smaller interval in the opposite parents that gene-
rated the characteristic path. Fig.4b shows in detail the process of generating
the new chromosomes.

4.4 Mutation Operation

Mutation operation prevents the algorithm from being trapped in a local mini-
mum. Mutation is an operator to maintain genetic diversity in the population.
It introduces new genetic structures in the population by randomly modifying
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some of its building blocks. It helps to escape from a local solution and maintains
diversity in the population to find structures that improve the path planning [19].
All chromosomes are candidates to be submitted in the mutation process with
a probability of Probm [18].

In order to prevent a mutation parent producing a infeasible path, the deve-
loped algorithm for the mutation operator was established to avoid all such cases,
i.e, all the paths generated after the mutation are feasible. As in the crossover
operator, the first procedure performed is to generate a characteristic path. Then,
a cell of the characteristic path is randomly chosen and its subsequent one where
a random path between them will be inserted. The generated random path allows
only horizontal and vertical movements. Fig. 5 illustrates the operation for a 3×3
size connectivity grid.

Fig. 5: Detail of mutation operator.

4.5 Selection Process

In our work the goal is to obtain an optimal path, i. e., a path with the shortest
distance between the starting point and the end point by visiting all points of
the connectivity grid. In order to evaluate the chromosomes, the amount of cells
are analysed. The best path is the one with less cells in its chromosome. When
one of the chromosomes has (i × j) cells, i.e. when all points are visited only
once to accomplish all the visits, the path is fully optimized.

To get the best path it is necessary that the smallest paths are maintained
and transferred to the next generations. A selection process is proposed to obtain
the best parents and yet guarantee the diversity of the new populations. This
process consists of ordering all the chromosomes obtained in the current iteration
of the algorithm, considering the results of crossover and mutation operations,
and classifying them in ascending order. After ordering the chromosomes the
new population is selected, where 10% of the individuals are the ones with the
smallest paths and the remaining 90% are selected randomly from the ordered
chromosomes.

275 sciencesconf.org:bioma2018:183918



5 Numerical Results

In this section we will present the results obtained with the Genetic Algorithm
for the path planning to the problem described above. In order to evaluate the
obtained results, we will compare with the heuristic method proposed in [16].
This heuristic planning method is based on eight different priorities of directions
for the robot, where the best priority is selected and executed by the robot.

To validate and test the results of the path planning algorithm, we used
the SimTwo Simulator [20]. In the simulation environment (Fig. 6a), the robot
follows the dimensions of real robot used in [17], as show Fig. 6b and Fig. 6c.

The test environment used has a dimension of 3 meters long by 3 meters
wide. As explained above, the size of the connectivity grid can be changed and
consequently the resolution of the scan as well. For the present work, an 8 × 8
grid was used.

(a) SimTwo: 3D simula-
tion environment.

(b) Simulated robot. (c) Real Robot [17].

Fig. 6: Tools used to test the developed algorithm.

In this work we test three different situations. Situation A where there are
no obstacles and the optimal path is trivial. Situations B and C where there
are some known obstacles and it is not obvious the optimal path. The Genetic
Algorithm was executed ten times for each case, and the best result for each
problem is presented.

Fig. 7 presents the Situation A where connectivity grid has no obstacles. The
performance of the Genetic Algorithm (GA) is presented in Fig. 7b where is
analysed the evolution of the chromosomes generations during a GA run. The
line referring to the heuristic method presents the number of waypoints visited
when it is applied in path planning and the ideal line represents the number of
obstacle-free waypoints present in the connectivity grid, i.e., the ideal size of the
chromosome. Then it is possible to observe that the heuristic planning obtains
better results when compared with the GA results in environments with simple
layout (without obstacles). The obtained solution of the two tested procedures
are illustrated in 7c and 7d.
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(a) Connectivity
grid 8× 8.

(b) Comparison of
algorithms.

(c) Path plan-
ning by heuris-
tic.

(d) Path plan-
ning by GA.

Fig. 7: Plan with a connectivity grid 8× 8 without obstacles.

Fig. 8 presents the Situation B where connectivity grid has two known obs-
tacles. The performance of the Genetic Algorithm (GA) is presented in Fig. 8b
where is possible to observe that, after some iterations, the Genetic Algorithm is
capable to identify a better path when compared with the heuristic planning pro-
cedure. The obtained solutions of the heuristic planning and Genetic Algorithm
are illustrated in Fig. 8c and Fig. 8d, respectively.

(a) Connectivity
grid 8× 8.

(b) Comparison of
algorithms.

(c) Path plan-
ning by heuris-
tic.

(d) Path plan-
ning by GA.

Fig. 8: Plan with a connectivity grid 8× 8 with two known obstacles.

Fig. 9 presents the Situation C where the connectivity grid has three known
obstacles. The performance of the Genetic Algorithm (GA) is presented in Fig.
9b where it is possible to observe that GA obtains better solutions than the
heuristic planning procedure starting from the initial iterations.

The obtained solutions of the heuristic planning and Genetic Algorithm are
illustrated in Fig. 9c and Fig. 9d, respectively.

The Table 1 presents the number of visited cells. So, analyzing the Genetic
Algorithm behaviour in the Situations A, B and C it is possible to conclude that
the GA method has better results in a more complex environment.
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(a) Connectivity
grid 8× 8.

(b) Comparison of
algorithms.

(c) Path plan-
ning by heuris-
tic.

(d) Path plan-
ning by GA.

Fig. 9: Plan with a connectivity grid 8× 8 with three known obstacles.

Table 1: Number of visited cells: Heuristic Procedure and Genetic Algorithm
method comparison

Situation HP GA
A 70 75
B 75 71
C 83 72

6 Conclusion and Future Work

The presented paper proposes a path planning using an adapted Genetic Al-
gorithm to perform a scan in environments with toxic substances. The path is
applied to a mobile robot that moves according to the computed trajectory. It is
desired to optimize the travelled distance by the robot while mapping all the de-
sired waypoints. In the environments with known obstacles, the efficiency of the
proposed Genetic Algorithm is relevant, identifying the optimal path in complex
situations. Thus, a more efficient trajectory is planned.

As future work we intend to apply the algorithm in dynamic environments
with also unknown obstacles and replace the SimTwo by the real robot for a
more realistic approach. Moreover, a real time constraint should be addressed
to solve the path during the scan.
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Abstract. This paper presents a surrogate-assisted approach for expen-
sive equality constrained black-box optimization. The proposed method
proceeds in two phases where the first phase finds an approximately fea-
sible point and the second phase improves the objective function value
of this point by moving close to the region determined by the active sur-
rogate equality constraints. The proposed method is implemented using
radial basis function (RBF) surrogates. The numerical results are promis-
ing on test problems with a single equality constraint in comparison to
a pattern search method.

Keywords: constrained optimization, equality constraint, surrogate model,
radial basis function, expensive function

1 Introduction

This paper solves equality constrained optimization problems of the form:

min {f(x) : H(x) = (h1(x), . . . , hp(x)) = 0, ` ≤ x ≤ u} (1)

where f, h1, . . . , hp are functions whose values at an input x ∈ Rd are obtained
from a deterministic and expensive computer simulation. The region [`, u] ⊂ Rd

defined by the bounds is the search space for problem (1). Here, one simulation
for a given x ∈ [`, u] yields the values of f(x) and H(x). This paper assumes that
accurate gradient information for the objective and constraint functions are not
available. Problem (1) is denoted by ECBOP(f,H, [`, u]), where ECBOP stands
for Equality Constrained Black-box Optimization Problem.

While several surrogate-based methods have been developed for problems
with expensive black-box inequality constraints (e.g., Regis [1]), very few have
been proposed for problems with expensive equality constraints. Among them is
SACOBRA (Bagheri et al. [2]), which handles equality constraints by starting
with an expanded feasible region that is allowed to gradually shrink to a volume
close to zero. Another possibility is to use probability of feasibility approaches
(e.g., Forrester et al. [3]) where the infill criterion uses a product of the expected
improvement of the objective function and the probability of feasibility. This
paper proposes the Equality Constrained Optimization using Surrogates (ECOS)
algorithm that handles expensive black-box equality constraints using a different
approach. In ECOS, the next sample point is chosen from a set of randomly
generated trial points that lie close to the surrogate equality constraints.
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2 Handling Expensive Equality Constraints

Algorithm 1 is a pseudo-code for ECOS, which consists of two phases. Phase I
finds an approximately feasible point according to some constraint tolerance ε,
and then Phase II improves the objective function value of this approximately
feasible point by moving close to the region determined by the surrogate equality
constraints. In each iteration of Phase II, multiple trial points are generated using
a Gaussian distribution centered at the current best point and whose covariance
matrix is chosen so that the trial points tend to lie close to the intersection
of the surrogate equality constraints. Next, the sample point is chosen to be
best trial point according to two criteria: predicted objective function value
based on the surrogate and minimum distance from previous sample points. In
Algorithm 1, t is the number of simulations, x(t) is the sample point, and y(t) is
the current best point with respect to f and a constraint violation function VH .
Here, VH(x) = max1≤i≤p[max(|hi(x)| − ε, 0)], but other choices are possible.

To describe the generation of trial points, consider a non-degenerate multi-
variate normal N(µ,Σ) distribution. Here, µ is the mean vector and Σ is the
symmetric and positive definite covariance matrix. Its PDF is given by

f(x) = (2π)−d/2(det(Σ))−1/2 exp
[
−(1/2)(x− µ)TΣ−1(x− µ)

]
,

which is constant on the surface of ellipsoids of the form (x−µ)TΣ−1(x−µ) ≤ c2
for some fixed c ∈ R. If c2 = χ2

d(α) (upper (100α)th percentile of the chi-squared
distribution with d degrees of freedom), then

P [(x− µ)TΣ−1(x− µ) ≤ χ2
d(α)] = 1− α.

Let λ1, . . . , λd be the eigenvalues of Σ and let u1, . . . , ud be corresponding unit
eigenvectors. The ith axis of the ellipsoid is defined by

√
λiχ2

d(α)ui.
To generate the trial points in Steps 4 and 8, first determine the the gradi-

ents of the active surrogate equality constraints at the current best point y(t).
Next, find an orthonormal basis for the tangent plane to the surrogate equality
constraints at y(t). Then, extend the orthonormal basis for the tangent plane
to an orthonormal basis for Rd. The vectors in this orthonormal basis will be
the eigenvectors for the covariance matrix of the Gaussian distribution. Next,
determine the eigenvalues for the covariance matrix that will produce a suitable
(1 − α)100% prediction ellipsoid for the Gaussian distribution. Here, we want
the lengths of the axes in the directions of the basis vectors for the tangent plane
to be much larger than the lengths for the other directions. Using the eigenvec-
tors and eigenvalues obtained earlier, determine the covariance matrix for the
multivariate Normal distribution. Finally, generate multivariate Normal random
vectors with mean y(t) and with the covariance matrix found.

ECOS is implemented using a cubic radial basis function (RBF) model de-
scribed in Powell [4] and applied to several test problems with a single equality
constraint. Here, both the objective and equality constraints are treated as black-
boxes and assumed to be expensive. Preliminary results for ECOS are promising
in comparison with some alternative methods such as pattern search.
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Algorithm 1 Equality Constrained Optimization using Surrogates (ECOS).

Inputs: (1) ECBOP(f,H, [`, u]); (2) constraint violation function VH(x); (3) number
of trial points: r; (4) space-filling design: {x(1), . . . , x(k)} ⊆ [`, u] with k ≥ d + 1;
(5) type of surrogate; (6) constraint tolerance: ε; (7) maximum simulations: Tmax

Output: The best point found by the algorithm.
1. Evaluate Design. For t = 1, . . . , k, run simulator to obtain f(x(t)) and H(x(t)).
2. Initialize Current Best Point. Set the number of simulations t := k and let

y(t) be the current best point with respect to f and VH . If all sample points are
infeasible, then proceed to Phase I. Else, proceed to Phase II.

Phase I (Find a Feasible Point):
3. Fit Surrogates. Fit surrogates for the objective and equality constraint functions

using all previous sample points (all are currently infeasible).
4. Generate Trial Points. Generate random trial points from a Gaussian distribu-

tion with mean y(t) and whose covariance matrix is described below.
5. Select Sample Point. Use surrogate constraints to identify trial points with the

minimum number of predicted constraint violations. Among these points, select
x(t+1) as the one with the smallest predicted VH(x) based on the surrogates.

6. Evaluate Sample Point. Run simulator to obtain f(x(t+1)) and H(x(t+1)). Up-
date y(t+1). Reset t← t + 1. If t < Tmax and y(t) is not yet feasible, then go back
to Step 3. Else, if t = Tmax, then stop.

Phase II (Improve Best Feasible Point Found):
7. Fit Surrogates. Fit surrogates for the objective and constraint functions using all

previous sample points (have at least one feasible point).
8. Generate Trial Points. Generate random trial points from a Gaussian distribu-

tion with mean y(t) and whose covariance matrix is chosen so that the trial points
will tend to lie close to the intersection of the surrogate equality constraints.

9. Select Sample Point. Use surrogates for the objective and constraints to deter-
mine which trial points have the minimum number of predicted constraint viola-
tions. Among these points, select x(t+1) to be the best point according to a weighted
combination of two criteria: surrogate objective function value and minimum dis-
tance from previous sample points.

10. Evaluate Sample Point. Run simulator to obtain f(x(t+1)) and H(x(t+1)). Up-
date y(t+1). Reset t← t + 1. If t < Tmax, go back to Step 7; otherwise, stop.
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Abstract. The purpose of this paper is to show an adaptive metaheuris-
tic based on GA, DE, and PSO. The choice of which one will be used
is made based on a probability that is uniform at the beginning of the
execution, and it is updated as the algorithm evolves. That algorithm
producing better results tend to present higher probabilities of being se-
lected. The metaheuristic has been tested in four multimodal benchmark
functions for 1000, 2000, and 3000 iterations, managing to reach better
results than the canonical GA, DE, and PSO. A comparison between our
adaptive metaheuristic and an adaptive GA has shown that our approach
presents better outcomes, which was proved by a t-test, as well.

Keywords: Metaheuristics, Genetic Algorithms, Differential Evolution,
Particle Swarm Optimization, Adaptive, Multimodal.

1 Introduction

Different metaheuristics present unique exploration and exploitation capabilities,
i.e., they possess different forms of exploring and exploiting the search space.
Thus, what works for solving a specific problem might be not good for tackling
another one. Moreover, each problem can demand a particular set of parameters
for each algorithm.

In this context, adaptive algorithms have appeared trying to solve as many
problems as possible with no changes. Mostly approaches deal with adaptation in
terms of operators or parameters. When dealing with operators, the adaptation
tries to identify which operator is more suitable to the problem, while in param-
eters, the algorithm attempts to discover the best value. Both situations happen
during the execution of the algorithm, i.e., on-the-fly. For example, in [1], a Ge-
netic Algorithm choses between four crossover and three mutations operators as
the metaheuristic solves multimodal benchmarks functions. Then, the authors
evolve the algorithm to a self-adaptive one in [2], in which the parameters are
encoded into the genes of each solution.
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In fact, there are many works dealing with adaptive algorithms such as [3],
[4], [5], [6], [7], [8], etc. However, works that deal with different metaheuristics at
the same time are rare. For instance, [9] came up with an algorithm that executes
a GA and a PSO simultaneously; then they share information between their pop-
ulations. The main drawback of this algorithm is the performance because both
metaheuristics must execute at the same time. Costa’s work [10] came up with
the idea of upgrading the population in the SPEA2 (Strength Pareto Evolution-
ary Algorithm) using GA, DE and PSO by applying a stochastic approach, in
which as the algorithm executes if a metaheuristic creates a population which
dominates the previous one, then the probability of being chosen increases.

In this context, this paper is organized as follows: Section 2 illustrates the
pseudo code and how the canonical algorithms GA, DE, and PSO work; Sec-
tion 3 introduces our adaptive approach and how the algorithm chooses which
metaheuristic to use in execution time; Section 4 shows how the experiments
were set and explains the results; finally, Section 5 presents the conclusion and
future work.

2 Metaheuristics

2.1 Genetic Algorithms

In 1962, Holland [11] proposed an adaptive system that will become the Genetic
Algorithm as we know it. The pseudo code of a Genetic Algorithm is shown in Al-
gorithm 1. Firstly, the GA creates a random set of candidate solutions. For each
one, the algorithm calculates its fitness that expresses the quality of a solution.
Then, individuals are chosen to form a temporary population using a selection
mechanism. The temporary population undergoes genetic operators (crossover
and mutation) to generate the new population. Finally, the new population is
evaluated. If the algorithm is elitist and the previous population contains the
best chromosome, this solution replaces the worst individual in the new one;
otherwise, the old population is entirely replaced by the new one. The whole
process is repeated while the stop criterion is not reached.

Algorithm 1 - Genetic Algorithm

Population ← generateInitialPopulation();
fitness ← Eval(Population)
while stop Criteria not reached do

TempPopulation ← Selection(Population);
TempPopulation ← Crossover(TempPopulation);
Population ← Mutation(TempPopulation);
fitness ← Eval(Population)

end while
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2.2 Particle Swarm Optimization

The particle swarm optimization was proposed by Kennedy and Eberhart [12]
in 1995. The algorithm consists of particles that are placed into a search space,
and move themselves combining its own history position and the current global
optimal solution. A particle position is represented in the search space as SD

i =
(s1i , s

2
i , ..., s

D
i ) and it is updated based on its velocity V D

i = (v1i , v
2
i , ..., v

D
i ),

in which D represents the problem dimension. The new position is computed
by Equations 1 and 2, where w represents the inertia weight, cl and c2 are
acceleration constants, rl and r2 are random number in the range [0, 1], pdi is
the best position reached by the particle p, and gd is a vector storing the global
optima of the swarm so far.

vdi = w × vdi + c1r1 × (pdi − xdi ) + c2r2 × (gd − xdi ) (1)

sdi = sdi + vdi (2)

The Algorithm 2 outlines how PSO works. Initially, the swarm is created
at random, in which each particle has to be within the domain [adi , b

d
i ]. Then,

particles are evaluated to initialize the P matrix and the gd vector, which are the
best experience of each particle and the best solution that has been found so far,
respectively. Thereafter, the velocity and the position of a particle are updated
within a loop that obeys some stop criterion. In the pseudo code presented in
the Algorithm2, the stop criterion is a certain number of iterations.

Algorithm 2 - PSO Pseudo Code

S ← InitSwarm();
fitness ← Eval(S);
g ← best(fitness);
P ← S;
while stop Criterion not reached do

V = w ∗ V + c1r1× (P −X) + c2r2× (g −X);
S = S + V ;
fitness ← Eval(S);
if best(fitness) is best than g then

g ← best(fitness);
end if
if fitness(s) is best than p then

p ← fitness(s);
end if

end while
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2.3 Differential Evolution

Differential Evolution (DE) is a metaheuristic developed by Storn e Price [13]
in 1995. It works similarly to a Genetic Algorithm; however, using different
operators. The Algorithm 3 presents its pseudo code. The DE algorithm starts
initializing a random population along with its evaluation. Then, the mutation
process selects three random individuals creating the vector v, which is also
called vector of differences, where F is a constant chosen by the programmer.
Afterward, a new individual is created using a gene from v if a random number
is less than CR (Crossover Rate); otherwise, the gene comes from popij . Finally,
if the new individual is better than that one in the current population, the new
one replaces it.

Algorithm 3 - DE Pseudo Code

pop ← InitPopulation();
fitness ← Eval(pop);
while stop Criterion not reached do

Select 3 individuals randomly: indiv1, indiv2, indiv3;
vj ← indiv3 + F × (indiv1 − indiv2);
if (rand() ¡ CR) then

new indivj ← vj
else

new indivj ← popij
end if
if fitness(new indiv) best than fitness(popi) then

popi ← new indiv;
end if

end while

3 The Adaptive Metaheuristic

The adaptive metaheuristic was inspired in Carvalho’s work [1], in which the
authors use a similar process for choosing the proper genetic operators. The
Algorithm 4 presents the pseudo code of our approach. Basically, the adaptive
metaheuristic selects which one to use at execution time. All three algorithms
start with a uniform distribution, i.e., all of them have the same probability of
being selected. Then, if the chosen algorithm improves the current solution then
its probability of being selected increases by 1% while the other probabilities
decrease by 0.5%; otherwise, the probability decreases, while the other ones
increase with the same rate.

Also, the adaptation process can be done as many time as the programmer
wants. In this work, we tested the adaptation done on each, 25, 50, 100 and 125
iterations. On each iteration means that the adaptation, i.e., the algorithm is
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Algorithm 4 - Adaptive Metaheuristic

Population ← Init Population();
fitness ← eval(Population)
while Number of Generations not reached do

Select Metaheuristic()
Use Metaheuristic(Population, fitness)
if (Metaheuristic improves solution) then

Prob Metaheuristic++;
else

Prob Metaheuristic- -;
end if
Population ← NewPopulation;

end while

chosen on each iteration; on each 25, the adaptation is done in all iterations mul-
tiple of 25, and so on. For example, if the algorithm runs using 1000 iterations,
will be performed 40 adaptation on each 25, 20 adaptation on each 50, and so
on.

4 Computational Experiments

4.1 Experiment Setup

All experiments were conducted on an Intel Xeon X5650 2.67GHz, 24GB RAM,
500 GB Hard Disk on Ubuntu 16.04.2 LTS. In terms of parameters, all algorithms
used a population of 50 individuals, 30 genes, and 50 trials. The number of trials
were chosen based on the central limit theorem that allow us to use parametric
tests. The algorithms were implemented in Java 7 using Eclipse Oxygen. Also,
the following configurations were used on each kind of algorithms:

– GA: Probability of Crossover = 0.7; Probability of Mutation = 0.02; Se-
lection method = Tournament; Tournament Size = 7; Crossover = Simple;
Elitism = TRUE.

– PSO: c1 = 2.33; c2 = 2.47; linear inertia weight (Wmax = 0.9, Wmin = 0.4);
Topology = Star (Fully Connected).

– DE: Crossover Rate = 0.6; F = 0.815; DE/Rand/1.
– Adaptive: Probability increasing = 1%; Probability decreasing = 0.5%; It-

erations for adapting = 1, 25, 50, 100, and 125.

4.2 Benchmark Functions

In this work, we used four multimodal (several local optima) benchmark func-
tions as presented in Table 1, which are minimization functions very common
for testing metaheuristic. In this context, minimize a function f(x), x ∈ Rn is to
discover a vector x dimension n in which the value of f(x) is minimum. In the
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Table 1: Benchmark functions
Code Name Function Domain Min.

ROS Rosenbrock f1(x) =
∑n−1

i=1
[100(xi+1 − x2i )2 + (xi−1)2] [-5,10] 0

RAS Rastringin f2(x) = 10n+
∑n

i=1
[x2i − 10 cos (2πxi)] [-5.12,5.12] 0

SCW Schwefel f3(x) = −
∑n

i=1
xi ∗ sin

√
|xi| [-500,500] -12569.49

GRI Griewank f4(x) =
∑n

i=1
(x(i)2

4000
)−
∏n

i=1
(x(i)√

i
) + 1; [-600,600] 0

referred table we can see what the domain of each gene and its optimum value
are.

The Rosenbrock function is commonly considered as unimodal. Nonetheless,
the Generalized Rosenbrock (f1(x)) is multimodal in dimension higher than
three [14].

4.3 Results for 1000, 2000 and 3000 iterations

Table 2 presents the result (best, mean, worst and standard deviation) of each
canonical algorithm optimizing each benchmark function. Whereas Table 3 shows
the results of the adaptive metaheuristic on each type of adaptation. Both tables
are considering 1000 iterations. As we can see, the best results were presented
by the adaptive algorithms performing the adaptation on every 100 and 125
iterations. On the other hand, the canonical PSO shows better outcomes in the
mean and worst results for ROS function; and, GA reached best mean and worst
for SCW. However, the Adaptive gives better outcomes for RAS, SCW and GRI
functions. Regarding the worsts, the GA shows the best worst result for RAS,
SCW, and GRI. Nevertheless, the important thing here is that the best solutions
are reached by our adaptive metaheuristic.

Tables 4 and 5 show the results after 2000 iterations for the canonical algo-
rithms and the adaptive metaheuristic, respectively. Again the best results were
obtained by the adaptive metaheuristic. However, the canonical GA tended to
reach the best results in terms of mean and worst in the Schwefel function, while
PSO reached similar results in the Rosenbrock function.

Tables 6 and 7 present the outcomes after 3000 iterations for the canonical
algorithms and the adaptive metaheuristic, respectively. In this experiment, we
can notice that almost all results are better in the adaptive metaheuristic, ex-
cepting for Griewank function in which the DE presented the best result in best
and mean columns.

4.4 Comparison Against an Adaptive GA

In this comparison, two characteristics have been changed. In the first one, the
Schwefel function changed to f3(x) = 418d −∑n

i=1 xi ∗ sin
√
|xi|, in which d

is the dimension of the function that in our case is 30. In the second one, the
population size has been increased to 100. Table 8 shows the results for 1000 and
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Table 2: Results for 1000 iterations - canonical
GA

Best Mean Worst Std. Dev.

ROS 29.732 105.830 175.230 45.658

RAS 0.256 0.843 2.265 0.421

SCW -12568.247 -12563.990 -12556.364 3.308

GRI 0.612 0.984 1.042 0.077

DE

ROS 358.122 706.918 1505.896 234.446

RAS 137.588 160.048 179.952 10.394

SCW -9330.961 -8612.050 -8091.159 288.092

GRI 1.029 1.061 1.095 0.018

PSO

ROS 28.551 32.881 50.051 4.924

RAS 0.088 19.328 61.822 16.761

SCW -11306.211 -9155.361 -6479.682 1010.047

GRI 0.200 0.886 1.241 0.240

2000 iteration using the Adaptive GA [1], which stochastically chooses between
four crossover and three mutation operators in execution time.

Table 9 presents the results of our approach considering the adaptation on
“each 100” iterations. As we can observe, the adaptive metaheuristic presents
better results compared to the adaptive GA.

A bicaudal-based t-test considering α = 0.05 and a hypothesis test (H0)
that there are no differences between means, is presented in Table 10. Thus, if
t is within [-2.009, 2.009], we accept H0, otherwise we reject it. As we can see,
we rejected H0 in almost all cases. Therefore, the differences are meaningful in
the majority of the benchmark functions. In other words, the Adaptive meta-
heuristic presents the best results compared to the adaptive GA. Even though
the difference between the adaptive GA and the adaptive metaheuristic is not
meaningful in Rosenbrock function after 2000 iterations, the mean of the meta-
heuristic algorithm is smaller as well as the standard deviation, demonstrating
that the adaptive metaheuristic is much more stable than the adaptive GA

5 Conclusions

In this paper, we presented a stochastic adaptive metaheuristic based on GA,
DE, and PSO. Experiments using 1000, 2000, and 3000 iterations have shown
that our approach tends to present the best results with some variations in the
means and in the worsts; however, those differences tends to disappear in favor
of our approach as we increase the number of iterations. A comparison against
an adaptive GA showed that the adaptive metaheuristic reached much better
outcomes.
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Table 3: Results for 1000 iterations - adaptive
1 Iteration

Best Media Worst Std. Dev.

ROS 32.547 133.657 204.346 42.589

RAS 0.188 1.799 3.948 1.067

SCW -12568.710 -12560.413 -12534.404 7.355

GRI 0.267 0.893 1.049 0.194

25 Iteration

ROS 27.989 64.011 155.244 42.440

RAS 0.073 2.465 9.119 2.042

SCW -12568.104 -12552.624 -12481.255 16.161

GRI 0.022 0.800 1.101 0.338

50 Iteration

ROS 27.534 49.323 157.457 38.451

RAS 0.258 3.951 15.306 3.430

SCW -12569.344 -12560.870 -12517.038 11.205

GRI 0.071 0.764 1.192 0.318

100 Iteration

ROS 26.362 60.773 626.600 101.926

RAS 0.028 6.585 119.175 19.864

SCW -12569.381 -12318.744 -8529.903 884.435

GRI 0.006 0.758 1.100 0.337

125 Iteration

ROS 26.945 55.341 218.926 45.152

RAS 0.018 8.177 176.832 29.462

SCW -12569.472 -12294.613 -8428.805 881.318

GRI 0.041 0.701 1.120 0.403

Future work includes: use a self-adaptive approach on all parameters of our
method; parallelization of the adaptive metaheuristic using a General Purpose
Graphical Unit Processing (GP-GPU); and to use fuzzy logic to select which
algorithm to execute in a particular iteration.
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Table 5: Results for 2000 iterations - adaptive
1 Iteration

Best Mean Worst Std. Dev.

ROS 10.991 80.763 149.699 51.184

RAS 0.040 0.282 0.938 0.212

SCW -12569.233 -12568.156 -12565.010 0.909

GRI 0.054 0.451 1.000 0.260

25 Iteration

ROS 0.378 39.603 134.218 34.498

RAS 0.004 0.261 2.103 0.425

SCW -12569.213 -12567.382 -12560.399 1.812

GRI 0.013 0.137 0.485 0.131

50 Iteration

ROS 5.221 28.030 78.754 9.638

RAS 0.001 0.225 2.049 0.391

SCW -12569.476 -12568.625 -12560.359 1.684

GRI 0.001 0.085 0.532 0.125

100 Iteration

ROS 1.636 27.517 74.411 9.349

RAS 0.002 0.190 1.277 0.285

SCW -12569.485 -12567.591 -12560.978 2.381

GRI 0.000 0.115 0.966 0.207

125 Iteration

ROS 1.962 26.640 33.528 4.699

RAS 0.001 0.504 7.167 1.240

SCW -12569.486 -12568.512 -12560.069 1.826

GRI 0.000 0.141 0.934 0.262

Table 6: Results for 3000 iterations - canonical
GA

Best Mean Worst Std. Dev.

ROS 3.723 69.786 137.587 47.010

RAS 0.018 0.073 0.166 0.038

SCW -12569.361 -12568.958 -12568.017 0.304

GRI 0.114 0.488 0.942 0.227

DE

ROS 25.537 27.366 51.774 4.368

RAS 88.416 116.684 134.385 9.051

SCW -12444.607 -11851.003 -9850.102 511.812

GRI 0.000 0.000 0.002 0.001

PSO

ROS 26.566 28.543 29.442 0.462

RAS 0.004 5.257 28.130 7.292

SCW -11138.709 -8869.721 -6479.683 1049.671

GRI 0.002 0.217 0.630 0.169
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Table 7: Results for 3000 iterations - adaptive
1 Iteration

Best Mean Worst Std. Dev.

ROS 10.149 76.380 150.567 51.695

RAS 0.011 0.112 0.387 0.098

SCW -12569.457 -12568.978 -12567.635 0.430

GRI 0.014 0.193 0.776 0.151

25 Iteration

ROS 0.413 35.954 134.695 33.232

RAS 0.001 0.035 0.136 0.032

SCW -12569.388 -12568.692 -12566.106 0.743

GRI 0.000 0.033 0.159 0.039

50 Iteration

ROS 0.027 25.111 27.082 4.409

RAS 0.000 0.073 1.993 0.335

SCW -12569.486 -12569.228 -12566.700 0.538

GRI 0.000 0.020 0.132 0.033

100 Iteration

ROS 0.082 23.085 26.617 7.149

RAS 0.000 0.059 0.949 0.181

SCW -12569.487 -12569.296 -12567.423 0.460

GRI 0.000 0.023 0.253 0.053

125 Iteration

ROS 0.378 23.154 28.790 8.095

RAS 0.000 0.061 0.894 0.168

SCW -12569.487 -12569.289 -12567.281 0.441

GRI 0.000 0.015 0.199 0.037

Table 8: Results for the Adaptive GA
Adaptive GA - 1000 Iterations

Best Mean Worst Std. Dev.

ROS 41.837 248.705 1072.296 169.331

RAS 12.757 43.533 2176.657 19.680

SCW 1.807 3999.956 1371.780 1046.521

GRI 0.586 0.956 47.799 0.136

Adaptive GA - 2000 Iterations

Best Mean Worst Std. Dev.

ROS 18.396 130.863 6543.140 902.405

RAS 4.7851 31.1575 73.7288 18.4707

SCW 0.329 1349.220 4118.256 1381.812

GRI 0.155 0.573 1.389 0.241
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Table 9: Results for the Adaptive Metaheuristic Using 1000 and 2000 iterations
1000 Iteration

Adaptation 100 Iterations

Best Mean Worst Std. Dev.

ROS 18.506 33.126 134.860 18.076

RAS 0.006 9.561 159.507 26.413

SCW 0.054 16.316 444.853 63.163

GRI 0.017 0.621 1.081 0.385

2000 Iteration

Adaptation 100 Iteration

Best Mean Worst Std. Dev.

ROS 0.525 25.401 29.152 5.080

RAS 0.000 0.063 0.690 0.113

SCW 0.001 5.915 280.429 39.618

GRI 0.000 0.072 0.500 0.124

Table 10: T-test: Adpative Metaheuristic vs Adaptive GA
1000 Iteration

Adaptive GA Adaptive MH

Mean Std. Dev Mean Std. Dev t

ROS 248.705 169.331 33.126 18.076 8.951

RAS 43.533 19.68 9.561 26.413 7.293

SCW 3999.956 1046.521 16.316 63.163 26.867

GRI 0.956 0.136 0.621 0.385 5.801

2000 Iteration

Adaptive GA Adaptive MH

Mean Std. Dev Mean Std. Dev t

ROS 130.863 902.405 25.401 5.08 0.826

RAS 31.1575 18.4707 0.063 0.113 11.904

SCW 1349.22 1381.812 5.915 39.618 6.871

GRI 0.573 0.241 0.072 0.124 13.071
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Abstract. Different criteria exist for the classification of the meta-
heuristics. One important classification is: improvement metaheuristics
and constructive. On the one hand improvement metaheuristics, begins
with an initial solution and iteratively improves the quality of the solu-
tion using neighborhood search. On the other hand, constructive meta-
heuristics, are those in which a solution is built from the beginning,
finding in each iteration a local optimum. In this article, we to compare
two constructive metaheuristics, Ant Colony Optimization and Intelli-
gent Water Drops, by solving a classical NP-hard problem, such like the
Set Covering Problem, which has many practical applications, includ-
ing line balancing production, service installation and crew scheduling
in railway, among others. The results reveal that Ant Colony Optimiza-
tion has a better behavior than Intelligent Water Drops in relation to
the problem considered.

Keywords: Intelligent Water Drops, Set Covering Problem, Construc-
tive Metaheuristic

1 Introduction

The Set Covering Problem (SCP) is a NP-hard problem [10], which consists
into find a subset of columns in a zero-one matrix such that they cover all
the rows of the matrix at a minimum cost. Some of its applications includes
line balancing production, emergency services location, crew scheduling in mass-
transit companies, logical analysis of numerical data, metallurgical production,
vehicle routing and treatment of boolean expressions.

Given the complex nature of the SCP and the huge size of real datasets,
the problem has been studied and solved by several metaheuristics, such like
genetic algorithms [3], simulated annealing [4], indirect genetic algorithms [1],
ant colony optimization [11], cat swarm optimization [5], cuckoo search [14] and
a meta optimization [7],among others.

Constructive metaheuristics for the SCP includes Ant Colony Optimization
and Meta-RaPS. The aim of this article is to study the performance of the
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Ant Colony Optimization (ACO) and Intelligent Water Drops (IWD) algorithms
applied to the SCP. These constructive metaheuristics were introduced by: [8]
to solve the Traveling Salesman Problem (TSP), based on the behavior of ant
colonies and [13] to solve the Multiobjective Knapsack Problem (MKP) and it
is based on the behavior of natural water drops flowing in the beds of rivers,
carrying soil and moving between different branches to reach their destination;
the interesting on this is that the path constructed to the destination tends to
be optimal, despite the obstacles in the environment.

This article is organized as follows: In Section 2 we describe the SCP, in
Section 3 we present the ACO algorithm, , in Section 4 we present the IWD
algorithm, in Section 5 we describe the results obtained for several SCP instances
and finally in section 6, we present the conclusions and future work.

In the construction phase of the solution a degree of randomness must be
incorporated, with the aim of avoiding that the same solution is built in each
iteration. Each iteration ends when the solution is found, therefore in this type
of metaheuristics is avoided the problem of the infeasibility.

2 Set Covering Problem

The SCP consists into find a subset of columns in a zero-one matrix such that
they can cover all the rows of that matrix at a minimum cost.

The SCP can be defined as:

Minimize Z =

n∑

j=1

cjxj (1)

Subject to

n∑

j=1

aijxj ≥ 1 ∀i ∈ I (2)

xj ∈ {0, 1} ∀j ∈ J (3)

Let A = (aij) be a m × n binary matrix with I = {1, . . . ,m} and J =
{1, . . . , n} being the row and column sets respectively. We say that a column j
can cover a row i if aij = 1. The cost of selecting the column j is represented by
cj , a non-negative value, and xj is a decision variable to indicate if the column
j is selected (xj = 1) or not (xj = 0).

One of the many practical applications of this problem is the location of fire
stations. Lets consider a city divided in a finite number of areas which need to
locate and build fire stations. Each one of this areas need to be covered by at
least one station, but a single fire station can only bring coverage to its own area
and the adjacent ones; also, the problem requires that the number of stations to
build needs to be the minimum.
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Being the SCP a NP-hard class problem, one of the many difficulties that
benchmarks arise is regarding their size and the computational cost associated.
To solve this, many authors have proposed to simplify (or “pre-process”) the
problem before apply any exact method or metaheuristic. By doing this, we are
dealing with problems that are equivalent to original but smaller in terms of rows
and columns. We introduce a preprocessing phase before run the metaheuristic;
the goal of this phase is to reduce the size of instances and improve the perfor-
mance of the algorithm. In this article, we use two methods that have proven to
be more effective: Column Domination and Column Inclusion, presented in [2]
and [9] respectively.

3 Ant Colony Optimization

Ant Colony Optimization Algorithm (ACO) it was inspired by the behavior of
ant colonies in the search for their food, was proposed by [8], is a probabilistic
technique that allows to find the shortest path in a graph. In the nature, the
ants leave a chemical signal called pheromone, in the path through which pass.
The pheromone has an important role in the survival of the ants allowing to find
the shortest way to its power supply.

An ant exploratory moves in random searching for food, depositing pheromone
in its path which is followed by more ants which reach the source of food found.
When transiting more ants by this path, the amount of pheromone will be in-
creased reinforcing the path. If there are two paths to the same food source, the
shortest path will be the busiest because of its amount of pheromone, consider-
ing that in the longest path the pheromone will disappear because it is volatile.
The behavior of the ants is shown in the Figure 1.

B1

B2

A C
Food

N

Fig. 1. Path of the ants to its source of food.

The main idea, is to model an optimization problem as the search for the
lowest cost route in a graph by a colony of artificial ants. The ACO algorithms
are essentially constructive, that is to say, for each iteration all the ants build a
solution depositing pheromone, according to the quality of the solution, allowing
to guide to the rest of the ants of the colony.
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The ACO Algorithm can be applied directly to the SCP. The columns are
chosen as the solution components and have associated a cost and a pheromone
trail. Constraints say that each column can be visited by an ant once and only
once and that a final solution has to cover all rows.

A walk of an ant over the graph representation corresponds to the iterative
addition of columns to the partial solution obtained so far. Each ant starts with
an empty solution and adds columns until a cover is completed. A pheromone
trail τj and a heuristic information ηj are associated to each eligible column j. A
column to be added is chosen with a probability that depends of pheromone trail
and the heuristic information. The probability function is given by the equation
Equation 5:

pkj (t) =
τjη

β
j∑

l∈Nk
τl[ηl]

β
if j ∈ Nk (4)

where Nk is the feasible neighborhood of the ant k. The β parameter controls
how important is η in the probabilistic decision. τj is the pheromone and ηj is
the heuristic information.

In this work we use a dynamic heuristic information ηj that depends on the
partial solution of an ant. We defined as ηj =

ej
cj

, where ej is the so called cover

value, that is, the number of additional rows covered when adding column j to
the current partial solution, and cj is the cost of column j. An ant ends the
solution construction when all rows are covered.

An important step in ACO Algorithm is the pheromone update on the path.
The pheromone trails are updated as given by the following equation:

τj = p τj + ωi, ∀j ∈ J (5)

where p ∈ J [0, 1) is the pheromone persistence and ωi ≥ 0 is the amount
of pheromone put on column j.

The general pseudocode for the ACO is presented in Algorithm 1

Algorithm 1 Ant Colony System
1: {Step 1: initialize parameters}
2: while not stop condition do

3: {Step 2: All the ants in the colony generate a solution}
4: for each ant in the nest do
5: generate a new solution

6: end for
7: {Step 3: Update}
8: update local optimal

9: update pheromone trails

10: end while
11: {Step 4: Best solution}
12: return the best solution found
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Step 1. Algorithm parameters are initialized.

Step 2. Once each ant generated a solution, the local optimal solution is updated
if needed. Due to evaporation, all pheromone trails are decreased uniformly. The
ants deposit some amount of pheromone on good solution to mark promising
areas for next iterations.

Step 3. The algorithm ends when a certain stop condition is reached

Step 4. The best solution found is returned

The Set Covering Problem has been solved by the following variants of the
algorithm: Ant Colony Optimization (ACO), Ant Colony System (ACS), Max-
Min Ant System (MMA’S) and Hyper-Cube Framework for ACO [12].

4 Intelligent Water Drops Algorithm

The IWD algorithm is a population-based constructive metaheuristics proposed
in [13] and designed to imitate the flow properties of natural water drops, which
tend to describe an optimal path to their destination considering the distance
and despite the constraints in the environment.

In the algorithm, the population is composed by N water drops (denoted by
IWDk, k ∈ [1..N ]) moving in a discrete environment, represented by a graph
with Nc nodes in which the drops will move from one node to another.

Each drop has two main properties: the amount of soil it carries (denoted by
soilk) and the velocity (denoted by velk). Both properties can change how the
drop flows in the environment.

In case of soil, it is expected that as iterations passes, the amount of soil
carried by each drop will increase, making the drop bigger (Figure 2A). Also the
velocity in a water drop determines the amount of soil removed; the faster the
water drop is, the bigger the amount of soil removed (Figure 2B). However, the
velocity of a water drop can increase or decrease according to the branch chosen
in each iteration.

A B C

Fig. 2. Behavior of water drops in a river.

Choosing a branch (of the path) or another depends basically on how “de-
sirable” -in terms of the amount of soil- the branch is; so, if the branch has a
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high amount of soil then that branch is more difficult to flow (more soil, less
velocity) than another branch with a less amount (Figure 2C). In the algorithm,
this behavior is implemented by a probabilistic function of inverse of soil.

The IWD algorithm has been applied to several problems like: air robot path
planning, smooth trajectory planning, vehicle routing problem, economic load
dispatch problem, image processing, rough set feature selection, reservoir opera-
tion, code coverage, data aggregation in wireless sensor networks, multi-objective
job shop scheduling, among others.

The general pseudocode for the IWD is presented in Algorithm 2

Algorithm 2 Intelligent Water Drops
1: {Step 1: Static Parameters Initialization}
2: Initialize parameters N, MAX ITERATION, Nc.

3: Initialize soil parameters: as, bs, cs

4: Initialize velocity parameters: av , bv , cv

5: for i = 1 to MAX ITERATION do
6: {Step 2: Dynamic Parameter Initialization}
7: for k = 1 to N do
8: Initialize V Ck list as empty.

9: Initialize soilk value as zero.
10: Initialize velk value as InitVel.
11: end for
12: {Step 3: Create and Distribute Water Drops}
13: for k = 1 to N do
14: Create the kth water drop (IWDk).

15: Select randomly a node for IWDk.

16: end for
17: {Step 4: Update Visited List of Water Drops}
18: for k = 1 to N do
19: Update V Ck.

20: end for
21: {Step 5: Complete Each Water Drop Solution}
22: for k = 1 to N do
23: Choose a path for IWDk.

24: Update velocity (velk).

25: Compute the amount of soil (∆soil) to be carried by IWDk

26: Remove ∆soil from the path and add it to IWDk

27: end for
28: {Step 6: Find the Best Solution from the Iteration}
29: for k = 1 to N do
30: Calculate fitnessk

31: end for
32: {Step 7: Update Paths of the Best Solution from Iteration}
33: {Step 8: Update the Total Best Solution}
34: end for

Step 1. In this step we set the static parameters to run the IWD algorithm;
all of these values will remain constant during execution and can only change
between experiments.

The two properties of intelligent water drops -soil and velocity- also have
parameters to set in this step; these parameters are constants required to update
the soil and velocity values in each iteration. For soil, parameters are: as, bs and
cs; for velocity, parameters are: av, bv, cv.
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Step 2. Each water drop (denoted by IWDk, k ∈ [1...N ]) need to update certain
values in each iteration: a list of nodes visited, the value for soil property and
the value for velocity property.

In case of nodes, a list (denoted by V Ck) will be updated by adding the
last node visited; in case of the first iteration, this list will be set to empty
(V Ck = {}).

For soil and velocity, the first iteration will set arbitrarily these values to the
static parameters of InitSoil and InitVel respectively.

Step 3. In this step the water drops are created and then distributed randomly
along the nodes. At this point, we do not use any probability function yet.

Step 4. With all water drops distributed, we can update their list of visited
nodes by adding the nodes from Step 4.

Step 5. This step will build a valid path to solution by moving the recently
created water drops across nodes and updating their soil and velocity properties
each time. All steps described here will be executed in a loop until reach a
solution.

Step 5.1. Select the next node (called j) to be visited by water drop IWDk.
Considering a water drop at node i and with a visited list of V Ck, this step
will look at all nodes that have not been visited yet and will select one of them
according to a probability function based on the amount of soil present in the
path to that next node (Equation 6).

pki (j) =
f(soil(i, j))∑

∀l/∈V Ck f(soil(i, l))
(6)

The function f(soil(i, j)) represents the inverse amount of soil in the path
between nodes i and j respectively and uses a constant ε with the solely purpose
to avoid zero division (Equation 7).

f(soil(i, j)) =
1

ε+ g(soil(i, j))
(7)

The function g(soil(i, j)) is introduced to always get a positive value when
calculating the amount of soil between nodes i and j respect to the amount of
soil in the visited path (Equation 8).

g(soil(i, j))




soil(i, j) if min

l/∈vc(IWD)
(soil(i, l)) ≥ 0

soil(i, j)− min
l/∈vc(IWD))

(soil(i, l)) else
(8)
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Step 5.2. Update velocity of the water drop. As long as the water drop moves
between nodes i and j certain amount of soil will be carried by the drop, turning
the drop bigger. To calculate this change, the algorithm will use a function based
on the soil in the path between i and j (Equation 9).

velk(t+ 1) = velk(t) +
av

bv + cv · soil(i, j)
(9)

Step 5.3. Update soil amount of the water drop. Depending on the velocity value
of the water drop when moving between i and j, the amount of soil removed from
environment (soil(i, j)) and carried by the drop for the next iteration (soilk(t+
1)) will be different (Equations 10, 11 and 12). The more time it takes, the more
soil the water drop will carry (Equation 13).

soil(i, j) = (1− ρ) · soil(i, j)− ρ ·∆soil(i, j) (10)

soilk(t+ 1) = soilk(t) +∆soil(i, j) (11)

∆soil(i, j) =
as

bs + cs · time(i, j : velk(t+ 1))
(12)

time(i, j : velk(t+ 1)) =
HUD(i, j)

velk(t+ 1)
(13)

The HUD(i, j) is a local heuristic function proposed in [13] to measure the
undesirability of the water drop to move from one node to another. In this article,
we applied the same idea for SCP; the heuristic function applied considers the
cost of moving to node j (costj) and the number of constraints covered by the
node (Rj); the function is presented in Equation 14.

HUD(i, j) =
costj

Rj /∈ V CR
(14)

Step 5.4. Remove soil from the path and add it to the water drop. In previous
steps, we calculated the amount of soil removed from the path (∆soil); now, the
value of soil property for each water drop (soilk) needs to be updated.

Step 6. Once all water drops have completed their solutions, the algorithm
requires to evaluate which one was the best in the current iteration (T IB); to
do this, we have to consider specifically the problem we are solving -SCP in
this case- where the best solution is given by the one with the minimum cost
associated. The equation that will compute this step is presented in Equation
15.

T IB = arg min q(IWDk) (15)
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Step 7. The path traveled by the best water drop in the iteration (TIB) will
modify the environment for the future drops. In this step, the algorithm will
update the amount of soil in the arcs of the graph that were traveled by T IB in
order to reflect the impact of this drop on them.

The soil update then, will be done based on Equation 10 but considering
the quality of the best solution found during the current iteration (T IB). As
better the solution is, then more soil will be removed. In the algorithm, this
is calculated in terms of the soil present during the current iteration and the
quality of the iteration-best solution (Equation 16). The parameter ρIWD is a
negative constant.

soil(i, j) = (1− ρIWD) · soil(i, j) +

ρIWD · soil(i, j)IB ·
1

q(T IB)
(16)

Step 8. Finally, if the iteration-best solution is better than the global-best, then
the global-best solution needs to be replaced with the new one (Equation 17).

TTB =

{
T IB if q(TTB) > q(T IB),

TTB else
(17)

5 Computational Results

The proposed IWD algorithm has been implemented in Java language in an Intel
CORE i7 CPU, 8GB of RAM, running Windows 7 Ultimate 64 bit.

5.1 Parameters

With the objective of finding a better behavior of the algorithm we consider
different configurations for the static parameters based on the size of the families
of instances. The values of each family is obtained when running the algorithm 10
times by varying the parameters: Number of intelligent water drops, Maximum
number of iterations and initial soil value. The selected configuration is the one
which corresponds to the solution with best RPD.

The parameters tuning for the IWD algorithm is detailed in Table 1 consid-
ering the different instances families.

Table 1. Tuning for Static Parameters in IWD.

Dataset m n N MAX Initial as bs cs Initial av bv cv ε ρ
ITERATION Soil V el

4 200 1000 250 300 1600 1000 0.01 1 3 10 0.01 1 0.01 0.95
5 200 2000 300 600 1600 1000 0.01 1 3 10 0.01 1 0.01 0.95
6 200 1000 250 600 1600 1000 0.01 1 3 10 0.01 1 0.01 0.95
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The instances tested are from Beasley’s OR Library. Details on instances are
presented in Table 2.

Table 2. Set Covering Instances.

Instance No. of m n Cost Density Optimal
set instances range (%) solution

4 10 200 1000 [1, 100] 2 Known
5 10 200 2000 [1, 100] 2 Known
6 5 200 1000 [1, 100] 5 Known

After performed experiments for the 3 families presented before, results can
be seen at Table 3. This tables, presents the instance number, the optimum
result known (Zopt), the minimum result obtained by our experiments (Zmin),
the average result obtained (Zavg) and the relative percentage deviation (RPD)
for IWD with Pre-Processing and IWD [6] techniques.
The RPD value quantifies the deviation of the objective value Zmin from the
optimal known Zopt. To calculate it, we use Equation 18

RPD =

(
Zmin − Zopt

Zopt

)
× 100 (18)

Table 3. Computational Results

Instance Zopt Zmin Zavg RPDACO Zmin Zavg RPDIWDpreprocess
DiffRPD

4,1 429 443 449 0,23 430 434 3,26 92,94
4,2 512 560 579 0,00 512 518 9,38 100,00
4,3 516 546 561 0,00 516 518 5,81 100,00
4,4 494 536 554 0,20 495 501 7,84 97,45
4,5 512 552 592 0,39 514 519 7,81 95,01
4,6 560 614 263 2,68 575 575 9,64 72,20
4,7 430 456 478 0,70 433 437 6,05 88,43
4,8 492 536 568 0,41 494 497 8,94 95,41
4,9 641 706 721 0,78 646 654 10,14 92,31
4,10 514 586 596 0,78 518 522 14,01 94,43

5,1 253 277 301 0,79 255 259 9,49 91,68
5,2 302 334 357 1,32 306 309 10,60 87,55
5,3 226 245 264 2,65 232 234 8,41 68,49
5,4 242 263 291 0,41 243 243 8,68 95,28
5,5 211 232 254 0,47 212 212 9,95 95,28
5,6 213 234 250 0,00 213 216 9,86 100,00
5,7 293 325 351 1,71 298 298 10,92 84,34
5,8 288 316 344 0,35 289 289 9,72 96,40
5,9 279 325 355 0,72 281 282 16,49 95,63
5,10 265 291 302 1,13 268 269 9,81 88,48

6,1 138 156 181 2,90 142 145 11,54 74,87
6,2 146 184 194 4,79 153 156 20,65 76,80
6,3 145 172 189 0,00 145 149 15,70 100,00
6,4 131 152 181 2,29 134 136 13,82 83,43
6,5 161 188 198 0,62 162 169 14,36 95,68

In accordance with the results showed in the table 3 it is visualized that
ACO was mejor in all the instances achieving 4 optimals, however also it is
appreciated that the RPD of IWD is similar for all instances.
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6 Conclusions and Future Work

This article presents the comparison of two constructive metaheuristics (IWD
and ACO), solving a classic combinatorial problem as SCP which has been used
for modeling problems of the industry. For this problem ACO had a better
behavior than IWD, reaching 4 optimum for the instances used in contrast to
IWD that did not reach any. We used the instances of the groups 4,5,6. For group
4, ACO obtained 2 optimum, 1 in group 5 and 1 in group 6. In order to improve
the behavior of IWD, it incorporated a stage of preprocessing which helped
to improve the response but without reaching a reach some optimal. Although
the results of IWD have not been better than ACO, these are encouraging. In
the same line, the future work proposed it is related to improve the tuning of
parameters to improve the results. Also, another very interesting line is related
to test the algorithm for the remaining instances from OR Library and other
SCP libraries, such like the Unicost (available at OR-Library website), Italian
railways, American airlines and the Euclidean benchmarks.
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Ingenieŕıa para el 2030” PUCV.

References

1. Uwe Aickelin. An indirect genetic algorithm for set covering problems. Journal of
the Operational Research Society, 53:1118–1126, 2002.

2. John Beasley. An algorithm for set covering problem. European Journal of Oper-
ational Research, 31:85–93, 1987.

3. John Beasley and P. Chu. A genetic algorithm for the set covering problem. Eu-
ropean Journal of Operational Research, 94:392–404, 1996.

4. Michael Brusco, Larry Jacobs, and Garry Thompson. A morphing procedure to
supplement a simulated annealing heuristic for cost and coverage correlated set
covering problems. Annals of Operations Research, 86:611–627, 1999.

5. Broderick Crawford, Ricardo Soto, Natalia Berŕıos, Franklin Johnson, Fernando
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Abstract. This paper presents an approach to recovering distributed applica-
tions, which consist of software agents running on different computers from
drastic damages by disasters. The approach is inspired from regeneration mech-
anisms in living things, e.g., tails of lizards. When an agent delegates a function
to another agent coordinating with it, if the former has the function, this func-
tion becomes less-developed and the latter’s function becomes well-developed
like differentiation processes in cells. It can also initialize and restart differen-
tiated software agents, when some agents cannot be delegated like regeneration
processes. It is constructed as a general-purpose and practical middleware system
for software agents on real distributed systems consisting of embedded computers
or sensor nodes.

1 Introduction

Hundreds of natural disasters occur in many parts of the world every year, causing bil-
lions of dollars in damages. This fact may contrast with the availability of distributed
systems. Distributed systems are often treated to be dependable against damages, be-
cause in distributed systems data can be stored and executed at multiple locations and
processing must not be performed by only one computer. However, all existing dis-
tributed systems are not resilient to damages in the sense that if only one of the many
computers fails, or if a single network link is down, the system as a whole may be-
come unavailable. Furthermore, in distributed systems partially damaged by disasters
surviving computers and networks have no ability to fill functions lost with damaged
computers or networks.

On the other hand, several living things, including vertebrates, can regenerate their
lost parts, where regeneration is one of developmental mechanisms observed in a num-
ber of animal species, e.g., lizard, earthworm, and hydra, because regeneration enables
biological systems to recover themselves against their grave damages. For example,
reptiles and amphibians can partially regenerate their tails, typically over a period of
weeks after cutting the tails. Regeneration processes are provided by (de)differentiation
mechanism by which cells in a multicellular organism become specialized to perform
specific functions in a variety of tissues and organs. The key idea behind the approach
proposed in this paper was inspired from (de)differentiation as a basic mechanism for
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regeneration like living things. The approach introduces a (de)differentiation mecha-
nism into middleware systems for distributed systems, instead of any simulation-based
approaches.1

Our middleware system aims at building and operating distributed applications con-
sisting of self-adapting / tuning software components, called agents, to regenerate /
differentiate their functions according to their roles in whole applications and resource
availability, as just like cells. It involves treating the undertaking/delegationof functions
in agents from/to other agents as their differentiation factors. When an agent delegates
a function to another agent, if the former has the function, its function becomes less-
developed in the sense that it has less computational resources, e.g., active threads, and
the latter’s function becomeswell-developed in the sense that it has more computational
resources.

2 Example Scenario

Let us suppose a sensor network to observe a volcano. Its sensor nodes are located
around the volcano. Each of the nodes have sensors to measure accelerations result
from volcano tectonic earthquakes around it in addition to processors and wired or
wireless network interfaces. The locations of sensor nodes tend to be irregular around
the volcano,

A disaster may result in drastic damages in sensor networks. For example, there are
several active or dormant volcanos in Japan. Sensor networks to detect volcano ash and
tremor are installed at several spots in volcanoes. Volcanic eruptions, including phreatic
eruptions, seriously affect such sensor networks. More han half sensor nodes may be
damaged by eruptions. Nevertheless, the sensor networks should continue to monitor
volcano tectonic earthquakes with only their surviving nodes as much as possible.

Sensor nodes in a volcano are located irregularly, because it is difficult for people to
place such nodes at certain positions in volcanos, because there are many no-go zones
and topographical constraints. Instead, they are distributed from manned airplanes or
unmanned ones. Therefore, they tend to be overpopulated in several areas in the sense
that the coverage areas of their sensors are overlap or contained. To avoid congestion in
networks as well as to save energy consumption, redundant nodes should be inactivated.

3 Requirements

To support example scenarios discussed in the previous section, our approach needs to
satisfy the following requirements: Self-adaptation is needed when environments and
users’ requirements change. To save computational resources and energy, distributed
systems should adapt their own functions to changes in their systems and environments.
Saving resources is important in distributed systems used in field, e.g., sensor networks,
rather than data centers, including cloud computing. Our approach should conserve lim-
ited computational resources, e.g., processing, storage resources, networks, and energy,

1 There is often a gap between the real systems and simulations. We believe that adaptive dis-
tributed systems need more experiences in the real systems.
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at nodes as much as possible. Non-centralized management can support reliability and
availability. Centralized management may be simple but can become a single point of
failures. Therefore, our adaptation should be managed in a peer-to-peer manner. Dis-
tributed systems essentially lack no global view due to communication latency between
computers. Software components, which may be running on different computers, need
to coordinate them to support their applications with partial knowledge about other
computers. Our approach should be practical so that it is implemented as a general-
purpose middleware system. This is because applications running on distributed sys-
tems are various. Each of software components should be defined independently of our
adaptation mechanism as much as possible. As a result, developers should be able to
concentrate their application-specific processing.

4 Approach: Regeneration and Differentiation

The goal of the proposed approach is to introduce a regeneration mechanism into dis-
tributed systems like living things. Regenerations in living things need redundant infor-
mation in the sense that each of their cells have genes as plans for other cells. When
living things lose some parts of their bodies, they can regenerate such lost parts by
encoding genes for building the parts with differentiation mechanisms. Differentiation
mechanisms can be treated as selections of parts of genes to be encoded. Since a dis-
tributed application consists of software components, which may be running on differ-
ent computers like cells, we assume that software components have program codes for
functions, which they do not initially provide and our differentiation mechanisms can
select which functions should be (in)activated or well/less-developed.

Each software component, called agent, has one or more functions with weights,
where each weight indicates the superiority and development of its function in the sense
that the function is assigned with more computational resources. Each agent initially
intends to progress all its functions and periodically multicasts messages about its dif-
ferentiation to other agents of which its distributed application consist. Such messages
lead other agents to degenerate their functions specified in the messages and to decrease
the superiority of the functions. As a result, agents complement other agents in the sense
that each agent can provide some functions to other agents and delegate other functions
to other agents that can provide the functions.

5 Design

Our approach is maintained through two parts: runtime systems and agents. The former
is a middleware system for running on computers and the latter is a self-contained and
autonomous software entity. It has three protocols for regeneration/differentiation.

5.1 Agent

Each agent consists of one or more functions, called the behavior parts, and its state,
called the body part, with information for (de)differentiation, called the attribute part.
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The body part maintains program variables shared by its behaviors parts like instance
variables in object orientation.When it receives a request message from an external sys-
tem or other agents, it dispatches the message to the behavior part that can handle the
message. The behavior part defines more than one application-specific behavior. It cor-
responds to a method in object orientation. As in behavior invocation, when a message
is received from the body part, the behavior is executed and returns the result is returned
via the body part. The attribute part maintains descriptive information with regard to the
agent, including its own identifier. The attributes contains a database for maintaining the
weights of its own behaviors and for recording information on the behaviors that other
agents can provide.

5.2 Regeneration

We outline our differentiation processes for regeneration (Fig. 1) . The Appendix de-
scribes the processes in more detail.

– Invocation of behaviors: Each agent periodically multicasts messages about the
weights of its behaviors to other agents. When an agent wants to execute a behav-
ior, even if it has the behavior, it compares the weights of the same or compatible
behaviors provided in others and it. It select one of the behaviors, whose weights
are the most among the weights of these behaviors. That is, the approach selects
more developed behaviors than less developed behaviors.

– Well/Less developing behaviors:When a behavior is executed by other agents, the
weight of the behavior increase and the weights of the same or behaviors provided
from others decrease. That is, behaviors in an agent, which are delegated from
other agents more times, are well developed, whereas other behaviors, which are
delegated from other agents fewer times, in a cell are less developed.

– Removing redundant behaviors: The agent only provides the former behaviors and
delegates the latter behaviors to other agents. Finally, when the weights of behaviors
are zero, the behaviors become dormant to save computational resources.

– Increasing resources for busy behaviors: Each agent can create a copy of itself
when the total weights of functions provided in itself is the same or more than a
specified value. The sum of the total weights of the mother agent and those of the
daughter agent is equal to the total weights of the mother agent before the agent is
duplicated.

– Reactivating dormant behaviors:When an agent does not receive messages about
the weights of behaviors provided in agents, treats such behaviors to be lost. When
it has the same or compatible behaviors, which are dormant, it resets the wights of
the behaviors, to their initial values. Therefore, they are regenerated and differenti-
ated according to the above process again.

6 Implementation

To evaluate our proposed approach, we constructed it as a middleware system with Java
(Figure 2), which can directly runs on Java VM running on VMs in IaaS, e.g., Amazon
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Fig. 1. Regeneration in Agents

EC2. It is responsible for executing duplicating, and deploying agents based on sev-
eral technologies for mobile agent platforms. It is also responsible for executing agents
and for exchanging messages in runtime systems on other IaaS VMs or PaaS runtime
systems through TCP and UDP protocols. Messages for exchanging information about
the weights of differentiation are transmitted as multicast UDP packets. Application-
specific messages for invoking methods corresponding to behaviors in agents are im-
plemented through TCP sessions.
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Fig. 2. Runtime system

Each agent is an autonomous programmable entity. The body part maintains a key-
value store database, which is implemented as a hashtable, shared by its behaviors. We
can define each agent as a single JavaBean, where each method in JavaBean needs to ac-
cess the database maintained in the body parts. Each method in such a JavaBean-based
agent is transformed into a Java class, which is called by another method via the body
part, by using a bytecode-level modification technique before the agent is executed.
Each body part is invoked from agents running on different computers via our original
remote method invocation (RMI) mechanism, which can be automatically handled in
network disconnection unlike Java’s RMI library. The mechanism is managed by run-
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time systems and provided to agents to support additional interactions, e.g., one-way
message transmission, publish-subscription events, and stream communications. Since
each agent records the time the behaviors are invoked and the results are received, it
selects behaviors provided in other agents according to the average or worst response
time in the previous processing. When a result is received from another agent, the ap-
proach permits the former to modify the value of the behavior of the latter under its
own control. For example, agents that want to execute a behavior quickly may increase
the weight of the behavior by an extra amount, when the behavior returns the result too
soon.

7 Evaluation

This section describes the performance evaluation of our implementation.

7.1 Basic performance

Although the current implementation was not constructed for performance, we eval-
uated several basic operations in distributed systems consisting of eights embedded
computers, where each computer is a Raspberry Pi computer, which has been one of
the most popular embedded computers (its processor was Broadloom BCM2835 (ARM
v6-architecture core with floating point) running at 700 Mhz and it has 1 GB memory
and SD card storage (16 GB SDHC), with a Linux operating system optimized to Rasp-
berry Pi, and OpenJDK. The cost of transmitting a message through UDP multicasting
was 17 ms. The cost of transmitting a request message between two computers was
28 ms through TCP. These costs were estimated from the measurements of round-trip
times between computers. We assumed in the following experiments that each agent
issued messages to other agents every 110 ms through UDP multicasting.

We evaluated the speed of convergence in our differentiation. Each computer had
one agent having three functions, called behavior A, B and C, where behavior A invoked
B and C behaviors every 200 ms and the B and C behaviors were null behaviors. We
assigned at most one agent to each of the computers. B or C, selected a behavior whose
weight had the highest value if its database recognized one or more agents that provided
the same or compatible behavior, including itself. When it invokes behavior B or C and
the weights of its and others behaviors were the same, it randomly selected one of the
behaviors. We assumed in this experiment that the weights of the B and C behaviors of
each agent would initially be five and the maximum of the weight of each behavior and
the total maximum of weights would be ten.

Differentiation started after 200 ms, because each agent knows the presence of other
agents by receiving heartbeat messages from them. The right of Fig. 3 details the results
obtained from our differentiation between four agents on four computers and The left
of Fig. 3 between eight agents on eight computers. Finally, two agents provide behavior
B and C respectively and the others delegate the two behaviors to the two agents in
both the cases. Although the time of differentiation depended on the period of invoking
behaviors, it was independent of the number of agents. This is important to prove that
this approach is scalable.
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Fig. 3. Convergence in four agents with two behaviors (Left) and Convergence in eight agents
with two behaviors (Right)

7.2 Sensor networks recovering from damaged by disasters

Let us suppose a sensor-network system consisting of 15× 15 nodes connected through
a grid network, as shown in Figure 4. The system was constructed on a commercial IaaS
cloud infrastructure (225 instances of Amazon EC2 with Linux and JDK 1.7). This
experiment permitted each node to communicate with its eights neighboring nodes and
the diameter of a circle in each node represents the weight of a behavior. Nodes were
connected according to the topology of the target grid network and could multicast to
four neighboring runtime systems through the grid network. We assume that each agent
monitors sensors in its current node and every node has one agent.
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Fig. 4. 15×15-Grid network on cloud computing
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We put agents at all nodes and evaluated removing of redundant agents. Each agent
has conflict with agents at its eights neighboring nodes, because it can delegate its func-
tion to them, vice versa. Figure 5 (i) shows the initial weights of agents. (ii) and (iii)
show the weights of behaviors in agents eight and sixteen seconds later. Even though
differentiated behaviors were uneven, they could be placed within certain intervals, i.s.,
two edges on the grid network. This proved that our approach was useful in developing
particular functions of software components at nodes.

ii) Weights (8 second later)i) Initial weights iii) Weights (16 second later)

Diameter is propostional to weight
of behavior at each agent Weight0 10

Fig. 5. Removing redundant agents

Figure 6 (i) was the initial weights of agents on the network. We explicitly made
a flawed part in the network (Figure 6 (ii)). Some agents dedifferentiate themselves in
nodes when a flawed part made in the network. In the experiment agents around the hole
started to activate themselves through dedifferentiation. The weights of their behaviors
converged according to the weights of their behaviors to the behaviors of other newly
activated agents in addition to existing agents. Finally, some agents around the hole
could support the behaviors on behalf of the dismissed agents with the flawed part.
This result prove that our approach could remedy such a damage appropriatively in a
self-organized manner. This is useful for sensing catastrophes, e.g., earthquakes and
deluges.

Next, we assume each node could multicast to all agents through the grid network.
Figure 7 shows only one agent is activated and the others are inactivated after their dif-
ferentiations, because the latter can delegate the function to the former. We partitioned
the grid network as shown Figure 8 (ii). The above half has a well-developed behavior
and the below half lacks such behavior. Therefore, all agents in the below half reset
their weights as shown Figure 8 (iii) and they are differentiated. Finally, only one agent
is activated on the below half part (Figure 8 (iv)).

8 Related Work

We compare between our approach and other existing bio-inspired approaches for dis-
tributed systems. The Anthill project [1] by the University of Bologna developed a
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ii) Partial destructioni) Initial weights iii) 16 second later

Fig. 6. Regeneration to recover damage

bio-inspired middleware for peer-to-peer systems, which is composed of a collection
of interconnected nests. Autonomous agents, called ants can travel across the network
trying to satisfy user requests. The project provided bio-inspired frameworks, called
Messor [5] and Bison [6]. Messor is a load-balancing application of Anthill and Bison
is a conceptual bio-inspired framework based on Anthill. One of the most typical self-
organization approaches to distributed systems is swarm intelligence [2, 3]. Although
there is no centralized control structure dictating how individual agents should behave,
interactions between simple agents with static rules often lead to the emergence of
intelligent global behavior. Suda et al. proposed bio-inspired middleware, called Bio-
Networking, for disseminating network services in dynamic and large-scale networks
where there were a large number of decentralized data and services [7, 10]. Although
they introduced the notion of energy into distributed systems and enabled agents to be
replicated, moved, and deleted according to the number of service requests, they had
no mechanism to adapt agents’ behavior unlike ours. As most of their parameters, e.g.,
energy, tended to depend on a particular distributed system. so that they may not have
been available in other systems. Our approach should be independent of the capabilities
of distributed systems as much as possible.

Finally, we compare between our approach and our previous ones, because we con-
structed several frameworks for adaptive distributed systems. One of them enabled dis-
tributed components to be dynamically federated [8].We also presented an early version
of the proposed approach [9], but the version was designed for adaptive services over
enrich distributed systems, e.g., cloud computing. They did not support any disaster
management.

9 Conclusion

This paper proposed an approach to recovering distributed applications from violent
damages, which might result from disasters. The approach is unique to other exist-
ing approaches for disaster-tolerant approaches for distributed systems. It was inspired
from a bio-inspiredmechanism, regeneration in living things. It was also available at the
edge of networks, e.g., sensor networks and Internet-of-Thing (IoT). It enabled agents,
which were implemented as software components, to be differentiated. When a com-
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ii) Weights (4 second later)i) Initial weights iii) Weights (8 second later)

Diameter is propostional to 
weight of behavior 
at each agent

Weight0 10

iv) Weights (12 second later) v) Weights (16 second later)

Fig. 7. Agents are differentiated in broadcasting to all agents

ponent delegated a function to another component coordinating with it, if the former
had the function, this function became less-developed and the latter’s function became
well-developed like differentiation processes in cells. It could also initialize and restart
differentiated software components, when some components could not be delegated like
regeneration processes in lizards. It was constructed as a general-purpose and practical
middleware system for software components on real distributed systems consisting of
embedded computers or sensor nodes.
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Appendix

This appendix we describe our model for regenerating software components, called
agents, by using a differentiation mechanism in detail. We specify from 1-th to n-th
behaviors of k-th agent, as bk

1 , . . . , bk
n and the weight of behavior b

k
i as wk

i . Each agent
(k-th) assigns its own maximum to the total of the weights of all its behaviors. TheW k

i

is the maximum of the weight of behavior bk
i . The maximum total of the weights of its

behaviors in the k-th agent must be less than W k. (W k ≥ ∑n
i=1 wk

i ), where wk
j − 1
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is 0 if wk
j is 0. The W k may depend on agents. In fact, W k corresponds to the upper

limit of the ability of each agent and may depend on the performance of the underlying
system, including the processor.

Invocation of behviors

1: When an agent (k-th agent) receives a request message from another agent, it selects
the behavior (bk

i ) that can handle the message from its behavior part and dispatches
the message to the selected behavior (Figure 1 (a)).

2: It executes the behavior (bk
i ) and returns the result.

3: It increases the weight of the behavior,wk
i .

4: It multicasts a restraining message with the signature of the behavior, its identifier
(k), and the behavior’s weight (wk

i ) to other agents (Figure 1 (b)).
2

The key idea behind this approach is to distinguish between internal and external re-
quests. When behaviors are invoked by their agents, their weights are not increased. If
the total weights of the agent’s behaviors,

∑
wk

i , is equal to their maximal total weight
W k, it decreases one of the minimal (and positive) weights (wk

j is replaced by wk
j − 1

where wk
j = min(wk

1 , . . . , wk
n) and wk

j ≥ 0). The above phase corresponds to the
degeneration of agents.

Well/Less developing bahviors

1: When an agent (k-th agent) wants to execute a behavior, bi , it looks up the weight
(wk

i ) of the same or compatible behavior and the weights (w
j
i , . . . , w

m
i ) of such

behaviors (bj
i , . . . , b

m
i ).

2: If multiple agents, including itself, can provide the wanted behavior, it selects
one of the agents according to selection function φk, which maps from wk

i and

wj
i , . . . , w

m
i to bl

i, where l is k or j, . . . , m.
3: It delegates the selected agent to execute the behavior and waits for the result from
the agent.

The approach permits agents to use their own evaluation functions, φ, because the se-
lection of behaviors often depends on their applications. Although there is no universal
selection function for mapping from behaviors’ weights to at most one appropriate be-
havior like a variety of creatures, we can provide several functions.

Removing redundant behaviors

1: When an agent (k-th agent) receives a restraining message with regard to bj
i from

another agent (j-th) , it looks for the behaviors (bk
m, . . . bk

l ) that can satisfy the
signature specified in the receiving message.

2: If it has such behaviors, it decreases their weights (wk
m, . . . wk

l ) and updates the

weight (wj
i ) (Figure 1 (c)).

3: If the weights (wk
m, . . . , wk

l ) are under a specified value, e.g., 0, the behaviors
(bk

m, . . . bk
l ) are inactivated.

2 Restraining messages correspond to cAMP in differentiation.
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Abstract—The reliability of a power system relies more on its 

flexibility, which is no longer easy to achieve on the production side 

because of the large integration of renewable energy sources. With 

the advances in smart grids, demand side management can achieve 

this flexibility by making customers participate in demand-

response programs. In this paper, we mainly discuss a variety of 

techniques mostly relying on computational methods to implement 

efficient demand response programs. The discussed works used 

several techniques from the fields of artificial intelligence and 

optimization algorithms to handle problems like optimal power 

flow, optimal pricing, optimal device scheduling, economic 

dispatch, and customer behavior learning. In this review, we show 

that demand response programs that are based on computational 

methods can solve a variety of problems and can open many

opportunities for electricity companies to make profit of the 

energy market. As an example of a potential opportunity to 

implement a demand response program, we propose a customer 

behavior learning model based on deep neural networks to learn 

the consumption patterns of a customer in response to a set of 

electricity prices. We also propose a profit maximization approach as 

an application of the learning model. The optimization is based on 

Genetic algorithms. The models can used in a variety of cases 

including reducing energy cost for customers as well as 

maximizing the retailers profit. 

Keywords— artificial neural networks; computational 

intelligence; machine learning; optimization algorithms; smart grid. 

I. INTRODUCTION

The concept of Smart grid have been first mentioned in [1]
as a response to the challenges that encountered the North
American power grid. Since then, several papers have been 
published in the field, including solutions to integrate 
distributed renewable energy generation, energy storage and
demand response optimization. There are many challenges to
implement a smart grid that can make extensive use of 
renewable energy and maintain its reliability. Demand-side 
management is a key solution to tackle these challenges by 
shifting the flexibility of the power system to the customer side. 
In this paper, we will discuss the features related to demand-
side management and more specifically demand response (DR) 
programs. 

DR programs can be divided into two categories: price- 
based DR and incentive-based DR [2]. In price-based DR the 
customer responds to the varying prices during the day or price 
signals in peak hours to reduce his consumption or shift his loads 
from high price periods to lower price periods. In incentive-
based DR the customer is given incentives to reduce his 
consumption in response to a signal about energy shortage in a 
certain period. In this paper, we focus more on price-based DR 
as it enables a good energy management throughout the day and
not just in peak hours. A price-based DR can rely on various 
pricing schemes, such as time-of-used (TOU), day- ahead
pricing (DAP), or real-time pricing (RTP). Each of these 
schemes have its own properties, advantages, and   challenges. 

In time-of-use pricing the utility company provides the 
customer with prices depending on the period of consumption 
throughout the day. The price during the peak hour is high, and it 
is low during the valley period. DAP is almost the same as TOU, 
but the prices are announced for one day 24 hours before. The 
DAP scheme relies on short-term prediction of energy 
consumption in the next 24 hours to offer the optimal prices. The 
RTP pricing scheme is different as it relies on the real time (or up 
to 1 hour ahead) energy consumption. The prices depend on
supply and demand laws and therefore will be dynamic and
difficult to predict. 

In this paper, we review the major works in demand side 
management and DR programs; we focus on the computational 
aspect of the solutions, and discuss several methods for 
optimization and learning systems. Moreover, we  will propose  a
novel research idea to solve the problem of optimal pricing and
profit maximization. We combine two computational methods; 
the first is a double learning model that will be trained to make 
predictions of the hourly energy consumption of each customer 
given the day ahead hourly prices, assuming that the customers
are price sensitive. Then a genetic algorithm will be used to find 
the best prices to propose to customers in order to maximize the 
retailer profit. 

The rest of this paper is organized as follows: Section II
reviews and classifies several works dealing with  DSM and DR
programs. Section III proposes a research idea for optimal 
pricing and customer behavior learning. Finally, Section IV 
concludes the paper and sketches some new research work ideas. 

II. A LITERATURE REVIEW

A. Optimal power flow and DSM 

The optimal power flow (OPF) problem consists of finding an 

optimal operational point of a power system that minimizes an 

appropriate cost function, such as generation cost or transmission 

loss subject to certain constraints on power and voltage variables 
[3]. OPF started receiving big interest since 1962 by Carpentier

in [4]. Since then several methods and algorithms in the literature 

have approached this highly non- convex problem of OPF [5–7], 

including nonlinear programming [8], Newton-Raphson [9], 

quadratic programming [10], Lagrange relaxation [11], and

interior point methods [12]. Recently, better results have been 

achieved by approaching the problem from the perspective of 

global optimization methods, such as genetic algorithm [13– 15], 

evolutionary programming [16–17], particle swarm optimization 

[18], simulated annealing [19], and tabu search [20]. In [21], an 

EMS was implemented together with a DC-OPF. Differential 
evolution was used to solve the minimization problem of the total 

generation cost. However, these methods present a heavy 

computation load and require high computational capabilities, 

which make their integration in EMS a complex task [22]. To 

overcome this limitation, the authors in [22] propose a DSM 

based on the combination of a fully connected neural network
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(FCN) and OPF. They proposed a learning architecture to learn 

the input/outputs and reproduce the behavior of an OPF that 
generates numerical data based on genetic algorithm and fuzzy 

logic. The benefit was the reduction of computational time 

necessary to find the optimal schedule of generation and price-

responsive loads. 

B. DR in Day-Ahead Market 

The main objective of a demand response program is to

enable the users to participate in the electric system stability by 

reducing their loads in response to power grid needs and

economic signals. As mentioned in Section I, this can be 

achieved by incentive based or price based DR. The day-ahead

pricing scheme was addressed in the literature using various 

methods. In [23], authors presented a multi-objective 

optimization for air-conditioning day-ahead control to minimize 

the electricity expenses and expected error for the desired

indoor temperature while retaining the degree of comfort in a 

room. The optimization problem was solved by an Immune 
Clonal Selection algorithm. In [24], authors presented an 

algorithm for the utility company to determine the optimal day 

ahead price values for customers who participate in a DR

program. The demand function is considered as an unknown 

parameter. The problem was approached by a learning 

algorithm based on stochastic approximation. The behavior of a

day-ahead electricity market was studied in [25] where a 

hierarchical multi-agent framework was presented for Day-

Ahead planning and decision-making in retail electrical energy 

markets. On the retailer’s side, agents are using machine 

learning techniques to model their environment and optimize 
their behavior to deal with interoperability and decision-making 

under incomplete information in a system that maintains the 

data privacy of the customers. On the customer’s side air 

conditioning devices are controlled by agents that employ Q-

learning algorithms [26] to optimize their consumption pattern. 

It is shown that this approach will reduce overall power 

consumption cost, maximize retailer’s profit, and reduce peak 

load. 

C. DR and Real-Time Pricing 

In a demand response program, users are required to

schedule their energy consumption according to meet the 

energy availability and reduce consumption peaks. The energy 

retailer provides the customers with a pricing scheme that 

reflects the energy cost and availability during the day. A 

comparison between real-time pricing and time-of-use pricing
schemes in [27] showed that real-time pricing is more beneficial 

for both customers and retailers, because it enables the power 

system to flatten the load profile by providing enough 

information on the   true time-variant   electricity supply costs 

and enough financial incentives to end customers to adjust their 

energy consumptions. However, implementing a real-time price 

is a complex task, because the user may not know his energy 

prices and demand ahead of time. It is even more challenging 

because the users' scheduling decisions are coupled, since the 

demand of a user affects the price that is charged to all users. 

To tackle these challenges, a DR management for real-time 

price should be implemented to assist customers automatically 
by determining the optimal operations of appliances. In [28], an 

automatic residential energy consumption scheduling

framework was designed. It attempts to   achieve   a   desired

trade-off    between    minimizing   the electricity payment and

minimizing the waiting time for the operation of each appliance 

in household in presence of a real-time pricing tariff combined
with inclining block rates. The model was based on simple linear 

programming and it requires a minimum user effort. In [29] an 

optimization model for individual customers was developed to 

adjust the customer’s decisions in response to time varying

electricity prices. Robust optimization approaches were 

employed to model the price uncertainty in order to avoid

considerable distortion to the optimal solution that can occur due 

to data uncertainty. In [30], authors proposed a real-time DR 

management model using scenario-based stochastic optimization 

and robust optimization approaches. The model can    be 

embedded    into    smart    meters    to automatically determine 

the optimal operation in the next 5- minute time interval while 

considering future electricity price uncertainties. 

D. DR for User’s Cost Minimization 

The previous works focus only on users trying to minimize 

their cost in short period of time and did not mention how the 
proposed scheduling algorithms can be used to minimize the 

long-term cost. Alternatively, [31–34] tackle this issue by 

introducing techniques for long-term cost minimization. In [31]

a reinforcement learning approach was proposed to minimize a 

bill payment and a discomfort cost function for a household

user. The model deals with stochastic demand arrivals and make 

a demand scheduling based on the devices allowable delays. A 

decentralized based heuristic method was implemented as well 

as an approximation approach based on Q-learning. A 

comparison of the results shows that each approach has 

advantages over the other under different scenarios. Q-learning   
approach   works   under    more general settings, while the 

heuristic approach is better at delivering solutions in a much 

faster manner for regular sized problems. In [32] a 

reinforcement learning was proposed to automatically  

schedule    the    appliances    in     a household. The system 

schedules the time of operation by calculating the customer’s 

trade-offs between delay and energy prices. It learns these 

trade-offs by observing energy customers’ behavior and

observing the patterns of energy pricing. Over time, the EMS 

learns how to make the best decisions for energy customers in 

the sense that it balances energy cost and the delay in energy 
usage in the same way that the customer would do. With the 

same technique [33] introduced     a     dynamic     pricing   

algorithm     based  on reinforcement learning for the service 

provider to minimize the system cost.  The model was then   

extended by adopting multi-agent learning structure where each

customer can decide its energy consumption scheduling based 

on the observed retail price aiming at minimizing its expected 

cost. The problem was formulated as a dynamic pricing

problem in the framework of a Markov-Decision Process 

(MDP). This problem was solved using Q-learning algorithm 

with two improvements:     alternative     state     definition     and

virtual experience [34]. Moreover, the algorithm is fast and
dynamic and does not require information about the system 

uncertainties. In [35], authors proposed a batch reinforcement- 

learning algorithm for residential demand response to schedule 

controllable loads, such as water heater and heat- pump

thermostat. The authors considered the situation when a forecast 

of the exogenous data is provided and proposed a policy 

adjustment method that exploits general expert knowledge. A 

model-free Monte-Carlo method was introduced to find a day-
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ahead consumption plan. 

E. DR for Multiple Users 

However, these works only deal with one user without 

considering the decision of multiple users trying to optimize 

their long-term costs. These interactions between users was 

captured by the authors in [36] where they studied the problem 
of electricity sharing among multiple foresighted users who

participate in a demand response program with real-time 

pricing scheme. They consider an energy storage system shared

across a group of homes, to store energy at lower price and sell 

it back to the grid when the price is high. They focus on the 

centralized control of such a shared battery. The scheduling

problem of each individual user was formulated as a Markov 

decision process to study the optimal cost savings region for a

finite capacity battery assuming a zero tolerance for activity 

delay. The price dependence on real-time demand and

renewable generation was modeled in [37] by a non- 

cooperative game of incomplete information among the users 
with  heterogeneous,  but  correlated  consumption  preferences. 

The Bayesian Nash Equilibria (BNE) in these games was 

considered as the optimal user behavior. Given this anticipating 

behavior two pricing policies were proposed: the first aims to

achieve a target return rate and the second aims   to minimize 

consumption peak-to-average ratio  (PAR).  In [38] a load

scheduling learning algorithm was designed for users who 

schedule their appliances in response to RTP information. The 

study of long-term interactions among foresighted users enables 

the authors to model the users’ decision making with 

uncertainty about the price and load demand as a Markov 
decision process with different states for different possible 

scenarios. The distributed load scheduling learning algorithm 

was based on actor-critic method [39–40] and converges to the 

Markov Perfect Equilibrium policy. The algorithm is online and

model free, which enables the system to learn from the 

consequences of past decisions. 

F. Economic Dispatch and DR 

While DR focus on the customer side and his reaction  to

prices and incentives to reduce load, economic dispatch (ED)

focus on the supply to minimize the power generation cost

subject to some constraints. Combination of demand response 

and dynamic economic dispatch is of a big interest, because it 

does not just schedule the generation units optimally, but also

the prices will be optimized at the same time, allowing a win- 

win strategy and increasing the reliability of the power system 
[27]. This concept was presented in [2, 41–42]. In [41] the 

combined model of ED and DR has been studied through a 

model based on price signals sent to the customers at the peak 

hour to reduce their loads and shift their consumption to the 

off-peak hours, in exchange of incentives paid to them for  

their participation in the EMS. The method used to determine 

the optimal price signal at peak hour is based on genetic 

optimization algorithm with a stochastic variable that  

estimates the probability of the customer's participation. 

However, this model is limited because it only considers the 

peak hours and not the whole day. A new solution method for

solving the combined problem was presented in [42]. The 
authors integrated DEED (Dynamic Economic Emission 

Dispatch) and game theory based DR under a deregulated

environment. This method is able to give feedback and update 

inaccurate solutions. The results show that this model is 

superior to independent optimization of DR or DEED. In [43]

the integrated model of DED and EDRP (Emergency Demand
Response Program) was presented with non-linear responsive 

load models. The optimization problem of fuel cost and

collaboration incentives was solved using RDPSO (Random 

Drift Particle Swarm Optimization). This model was lately 

rebuilt in [2] to make a common price based DRP, namely TOU, 

instead of incentives. The objective is to minimize generation 

cost and determine the optimal prices during different periods 

simultaneously. The total cost was obtained by 4 meta-heuristic 

algorithms namely PSO, GA, ABC, and BCO, but ICA 

(Imperialist Colony Algorithm) was eventually adopted, 

because it gave better results. 

G. Customer Behavior Learning and DR 

In demand response, the information about customer energy 

consumption is extremely valuable for optimization and pricing. 

The reaction of customers to the electricity price can enable the 

retailer to extract valuable insights about customer behavior by 
recognizing different consumption patterns. In [44], authors 

proposed algorithms for learning the future price elasticity of 

customers based on their responses to previous pricing updates. 

The task was formulated as a linear regression problem and

consider the aggregated changes in consumption over the 

distribution network as a weighted sum of all individual changes 

in consumption. In [45], authors studied  the customer price 

elasticity of demand using an agent-based model. The model 

was used to demonstrate and quantify the economic impact of 

price elasticity of demand in electricity markets. In [46] the 

problem of learning customers’ behavior was  approached  by  
short  term  load  forecasting  in  a  pricesensitive environment 

with real-time pricing scheme, where customers are reacting to

price signals. The model used a neuro-fuzzy approach by 

building a two-stage forecaster consisting of an artificial neural 

network load forecaster followed by a fuzzy logic system. All 

these models are built for aggregated customers whereas [47]

presented a model for individual customers. This is important, 

because it can identify valuable information about different 

behaviors and usage patterns between different customers in

response to the price and temperature signals. The proposed 

model is based on probabilistic Bayesian behavior model to
learn the energy usage patterns of shiftable appliances and a 

price-demand model to predict the hourly energy consumption 

of curtailable appliances. The authors also proposed a 

distributed pricing optimization based on genetic algorithm for 

the utility company to maximize its profit based on the learning

results. The reviewed works tackle different types of problems 

in demand side management using various computation 

methods and approaches. Table 1 classifies these works in 

addition to other works according to the issue and computation 

method used. 

III. OUR NOVEL RESEARCH PROPOSAL

The previously discussed works have approached the 

problem of DSM and specifically the demand response problem 

by valuable approaches. Most of works that tackle the issue of

device scheduling assume that the household is equipped with a 

Home Energy Management System (HEMS) that automate the 
task of turning on the appliances at lower price periods and 

turning them off at high price periods. Despite these works have 

achieved valuable results, the requirements to implement it in a 

large scale is too expensive for most practical situations. 
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Alternatively, smart meters infrastructure is already deployed

in a large scale around the world and still expanding.  In 2015, 

U.S. electric utilities had about 64.7 million advanced (smart) 

metering infrastructure (AMI) installations [48]. By 2020, it is 

expected that almost 72% of European customers will have a

smart meter for electricity [49]. It is expected that in the U.K., 

all households will have smart meters installed by 2020

according to [50]. Therefore, it is important to develop methods 

and techniques for demand side management to implement 

demand response programs that take advantage of this source 
of information by using the real-time data provided by the two-

way communication channels in smart grid. The approach

proposed in [47], presented a valuable method in this matter, it 

tackles the problem of learning the customer behavior and 

maximizing the retailer’s profit and the total energy cost 

according to the learning model, without increasing the 

electricity bill and without using any type of HEMS. The whole 

approach is based on the smart meters infrastructure and day 

ahead pricing.  

Our idea is to tackle almost the same problem with

different methods and with different assumptions. In [47], the 

pattern of energy usage learning approach was based on device 

by device consumption data extracted using a nonintrusive 

appliance load monitoring (NILM) to extract hourly 

consumption and on/off time information of each appliance 

from the entire electrical power consumption of each house by 

using signal analysis algorithms [51]. The appliances were then 

classified into shiftable and curtailable devices. In  each 

shiftable device, the learning is based on Bayesian probabilistic 
model, whereas curtailable devices was modeled by linear

regression including historical data of hourly prices and 

temperatures. However, the learning approach of shiftable 

devices considers just the ranking of the cheapest periods 

without considering the period itself. This information is 
extremely valuable because without it we cannot know if the 

user is price sensitive or is just using a device in an exact time 

every day and it coincides with the cheapest period. In our novel 

proposal, we will handle the aggregate shiftable devices instead 

of learning the consumption of each device. This will reduce the 

computational requirement without affecting the accuracy of the 

model. We will implement and test 2 learning models; the first 

one will learn the consumption patterns from shiftable 

appliances during 24 hours. The second model will learn the 

response of curtailable devices, namely air conditioning 

systems, to an electricity price and a temperature corresponding 

to a time slot of one hour. The model used for learning shiftable 
appliances consumption patterns takes 24 inputs representing 

the day ahead hourly prices, and 24 outputs representing the 

hourly loads from shiftable appliances. This architecture is 

justified by the fact that the customer is shifting his appliances 

according to the whole set of prices over one day either using a 

scheduling system or manually. In the second learning model, 

the inputs are the electricity price and temperature. This is 

justified by the assumption that air-conditioning systems’ loads 

depend only on the electricity price and temperature at a certain

time slot. The learning approach in the first model will use deep

NNs. This choice is justified by the ability of these models to 
learn the mapping between an input and output vectors with high

dimensions and complexity. In our case, we have an input and 

an output with 24 entries, which is a complex and high

dimensional learning problem. Fig.1 illustrate this architecture. 

In the second learning model, we will implement different 

regression algorithms, such as linear regression used in [47], 

support vector machines regression, along with deep NNs, then 

evaluate and compare the results in order to choose the best 

model for this problem. The two models will be trained on

historical data, and updated every week with the new 

consumption data to track consumption changes. After 

implementing the learning model, we will handle the 

OPF Optimal 

device 

scheduling 

Optimal 

pricing 

DR and ED 

combination 

Customer 

behavior 

learning 

Linear 

programming 

[28] [41] 

evolutionary 

optimization 

[13], 

[14], 

[15], 

[16], 

[17], 

[21]

[53], [2] [47] [2] 

Particle 

swarm 

optimization 

[18] [2], [54] [43], [2] 

Neural 

networks 

[22] [46] 

Fuzzy logic [22] [46] 

Immune 

Clonal 

selection 

[23] 

Stochastic 

programming 

[30] [24] 

Multi-agent 

system 

[33] [25],[34] [45] 

Machine 

learning 

[25] [55], [56] 

Reinforcement 

learning 

[25],  [31], 

[32],  [33], 

[35]Robust 

optimization 

[29, [30]

Game theory [36], [37] [42] 

Bayesian 

model 

[47], [56], 

[52] 

Table  1: CLASSIFICATION OF DIFFERENT WORKS AND TECHNIQUES 

Fig.1:  Neural network architecture for shiftable devices 
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5 

optimization problem to maximize the retailer’s profit without 

increasing the bill payment. We will evaluate 5 different meta- 
heuristics for combinatorial optimization namely: PSO, GA, 

ACO, ABC, and ICA. Then we make a comparison of results 

using real data from a local electricity retail company.  

Using the NILM we separate the data of shiftable and curtailable

devices. We train our models using these sets of data and then we 

use the trained models to predict the day ahead hourly energy 

consumption given the day ahead prices and temperatures. This 

process will be executed each week using the most recent 

consumption data.  

Based on these models, an optimization algorithm will be 

implemented to maximize the retailer’s profit. The aim of this 

algorithm is to find the prices that will maximize the difference 

between the energy cost and the benefit from all customers 

considering economic and political constraints about the amount 

of energy provided and the bill payment. We show here a GA 

based optimization algorithm using results from the learning
models to find the optimal pricing strategy. Figure 3 shows the 

process of finding the optimal pricing strategy. First, a population 

of PN strategies is initialized randomly; each strategy is 

represented by a 24-dimensional vector of hourly prices. Each 

prices vector is used as an input in the neural networks for 

shiftable and curtailable appliances. 24h temperature forecast for 

the day ahead is also used for curtailable appliances model. The 

energy consumption for each customer will be predicted then the 

bill payment will be calculated. The benefit will be calculated by 

summing the predicted bills of all customers in response to the 

strategy. The cost of the total energy consumption will be 
calculated. We calculate the predicted profit, which is the 

difference between benefit and cost. We check the constraints 

satisfaction and obtain the fitness function. We iterate this 

process for all the strategies. Then generate a new population of 

strategies by using the selection, crossover, and mutation. We 

repeat this process until a stop criterion, i.e., the situation when 

the solution is not improving anymore. At the end, we obtain an 

optimal strategy that the retailer will announce via smart meters 

IV. CONCLUSION AND FUTURE WORK

Demand response programs have a big potential in 

increasing the power system’s flexibility and reliability by 

involving the customer in the decision process. Several methods 

from the literature for optimization and automation were 

discussed in this paper. Computational methods from the field 

of artificial intelligence and optimization, were used to solve the 
problems of OPF, optimal pricing, optimal device scheduling, 

DR with economic dispatch, and customer behavior learning. 

Our novel proposal solves the combined problem of customer 

behavior learning and optimal pricing. Two learning model 

architectures  were proposed for customer behavior learning as 

well as a genetic algorithm for price optimization. The future 

work will bring more details and numerical results about the 

proposed idea. 

Advances in artificial intelligence and machine learning are 

deeply influencing our life in many aspects. AI takes advantage 

Fig.2:  Learning model for curtailable devices 

Fig.3: GA-based Optimization algorithm for retailer’s profit 

maximization 
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of the large availability of data nowadays and the big 

computational power. Therefore, this huge power of AI and ML 
are likely to be the next revolution in the most vital aspect of 

the modern life: energy. Smart grids are well appropriate and

much convenient to implement this idea of integrating AI and

ML in the energy management process.  Thanks to the two-

ways communication infrastructure and the large data collected

via smart meters. AI and ML techniques have a large potential 

in taking advantage of this data and infrastructure to tackle the 

challenges of the new smart grid allowing more integration of 

renewable energies, reducing carbon emission, saving generation 

cost, integrating electric vehicles, increasing network reliability, 
and offering better products to the final customers at lower prices. 

To achieve these expectations, several researches are focusing on

different aspects of the smart grid. The challenge in the future 

will be to implement a scalable system that can englobe different 

computation techniques and general AI to handle different 

aspects like demand side management, Electric vehicles, virtual 

power plants, energy prosumers, and self- healing networks.
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Abstract. Portfolio optimizations are widely studied because of their
real-world applications in finance and banking. The Classical formula-
tions of the portfolio optimization problem, such as mean-variance or
Value-at-Risk approaches, can result in a portfolio extremely sensitive
to errors in the data, such as mean and covariance matrix of the re-
turns. In this paper we propose a new robust optimization model as a
way to alleviate this problem in a tractable manner. We suppose that
the distribution of returns and the covariance matrix are uncertain and
bounded. We suggest robust formulations to take into account the worst
case criterion to cope with the sensitivity of the optimal portfolio linked
to uncertain market parameters. We treat the maximization of returns
and the minimization of risks as two separate objectives. Multi-Objective
Evolutionary Algorithms such as NSGA-II and SPEA2 are ideal for solv-
ing multi-objective portfolio problems. Finally we assess the performance
of our robust formulations using the Hypervolume Performance Assess-
ment Indicator (IH).

Keywords: Multiobjective, Heuristics, Optimization, Robust Optimiza-
tion, Multiobjective portfolio optimization, Worst-Case Criterion, NSGA-
II, SPEA2, Hypervolume Performance Indicator

1 Literature overview and positioning

The first mathematical model for portfolio selection under uncertainty is at-
tributed to Markowitz[18][19][20]. It looked at portfolio selection as an opti-
mization problem in which an asset mix is chosen so that the portfolio variance
is minimal for any given level of expected return, and simultaneously, the ex-
pected return is maximal for any given level of portfolio variance.A single linear
return on a portfolio is measured by the expected value of the random portfolio
return, and a single convex nonlinear risk is quantified by the variance of the
portfolio return.

Despite the theoretical success of the mean-variance model [19], practitioners
have shied away from this model. The following quote summarizes the problem:
Although Markowitz efficiency is a convenient and useful theoretical framework
for portfolio optimality, in practice it is an error-prone procedure that often

328 sciencesconf.org:bioma2018:185768



results in error-maximized and makes irrelevant investment portfolios [40]. This
behavior is a reflection of the fact that solutions of optimization problems are
often very sensitive to perturbations in the parameters of the problem; since the
estimates of the market parameters are subject to statistical errors, the results
of the subsequent optimization are not very reliable [46]. Various aspects of
this phenomenon have been extensively studied in the literature about portfolio
optimizations. Generally, the Markowitz model is criticized as less efficient with
axiomatic models of preferences for choice under risk [7]. Levy affirmed that
models with regard to the preferences are based on the relation of stochastic
dominance or on the expected utility theory [16].For that reason, Ballestero and
Romero, suggested maximizing the investor expected utility of returns over the
efficient frontier [6].

Several techniques have been suggested to reduce the sensitivity of the Markowitz-
optimal portfolios to input uncertainty: Chopra [46], Frost and Savarino [35]
proposed constraining portfolio weights, Chopra and al[46] proposed using a
James-Stein estimator for the means, while Klein and Bawa [41], Frost and
Savarino [35], Black and Litterman [11] suggested Bayesian estimation of means
and covariances. Although these techniques reduce the sensitivity of the port-
folio composition to the parameter estimates, they are not able to provide any
guarantees on the risk-return performance of the portfolio. Recently scenario-
based stochastic programming models have also been proposed for handling the
uncertainty in parameters. All approaches cited above do not provide any hard
guarantees on the portfolio performance and become very inefficient as the num-
ber of assets grows. Although many computational techniques have been devel-
oped for this purpose, most of them are single objective approaches, even though
this problem clearly consists of two conflicting objectives. However, this combi-
natorial optimization problem has a highly complex search space due to the
abundant choices of available financial assets. Thus, portfolio optimization con-
tinues to pose a challenge for efficient optimization techniques. Although many
computational techniques have been developed for this purpose, most of them
are single objective approaches, even though this problem clearly consists of
two conflicting objectives. However, there are an increasing number of multi-
objective approaches being developed, particularly multi-objective evolutionary
algorithms (MOEA)[33].
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The main advantage of evolutionary multi-objective portfolio optimization
[42], is that an estimation of the efficient risk-return frontier can be obtained in
a single run as opposed to the multiple runs needed in the case of single objective
approaches.

Robust optimization [15] means finding solutions to a given optimization
problems with uncertain input parameters that will achieve good objective values
for all, or most realizations of the uncertain input parameters [43]. The concept
of robust systems was first introduced by Taguchi [15], who studied uncertainties
which may occur during the design of a product, even if today we use methods
that are different from the ones previously mentioned, the goal remains the same,
it is to find a robust solution that is acceptable in many scenarios and that is
never too bad [44]. Accordingly, it is argued that the solution is robust only if its
value does not significantly change when the decision vector is slightly disturbed
[7]. The least sensitive to disturbance parameters solution is the most robust [45].
Robust solutions are those that optimize the robustness measurement in every
scenario. Eventually, define robustness as an ability to resist about or areas
of ignorance in order to protect impacts judged regrettable. Several techniques
have been suggested about the optimization under uncertainty. Uncertainty may
appear either in the costs coefficients or in the constraints matrix or in the
second member as well as it may appear in all of the model.To measure this
uncertainty, many robustness criteria exist which among criteria found in the
literature such as the worst-case and the maximum regret [34]. The maximum
regret criterion was introduced by Savage [24] et al [37]. Several authors studied
the application of this criterion. The first studies were those of Shimizu and
Aiyoshi [29], the work of Mausser and Laguna [17] who used uncertain linear
programs, and Averbakh [22]; we also cite the tree covering problem which was
treated with Yaman et al [21][22], Montemanni et al [39] [38]. The complexity of
this problem is given by Aron and Hentenryck [3], and an integer formulation is
proposed by Yaman [21]. For the worst-case criterion, we give some references to
some issues that caught our attention: we first mention the work of Yaman [21]
who is interested in the tree covering problem. There is also the robust shortest
path problem which is processed by Yu and Yang [14]. We finally mention the
work of Yu et al [14][13] on the robust knapsack problem, and also the work of
Gabrel and Murat [13] on the Robustness and duality in linear programming.

Structure and Contribution of this paper

In this paper we propose alternative deterministic models that are robust to
parameters uncertainty and estimation errors [18] and how to formulate and
solve the Multi-objective portfolio optimization problems under uncertainty [6]
[10]. The perturbations in the market parameters are modeled as unknown, but
bounded, and we take the pessimistic view of robustness and look for a solu-
tion that has the best performance under its worst case behavior of these per-
turbations.This robust optimization framework was introduced in Ben-Tal and
Nemirovski [2] for linear programming and in Ben-Tal and Nemirovski (1998)
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for general convex programming.To find the robust efficient frontier we are opt-
ing for the multi-objective genetic approach NSGA-II (Non-Dominated Sorting
Genetic Algorithm) [27] [26] which has the advantage of simultaneously taking
into account two crucial criteria for the optimization methods that are intensifi-
cation and diversification, using as metric respectively elitism and the distance
crowding. A comparative approach would be to choose a genetic evolutionary
algorithm SPEA2 (Strength Pareto Evolutionary Algorithm) [9] which is based
on the use of a record represented by an external force At of size Narchive. This
fixed-size package is designed to contain a limited number of non-dominated so-
lutions. The classification of individuals is based on the principle of dominance
over the value of Strength S(i) = |{j : j ∈ Pt ∪ At; i < j}|. To define which
method NSGA-II or SPEA2 is more robust, we introduce the hypervolume per-
formance indicator (IH).

The structure of this paper is as follows: Section 2 recalls the background
behind portfolio management and the robust optimization, section 3 looks at
optimization methods such as multi-objective and genetic algorithms and multi-
objective indicators, section 4 contains computational results on the performance
of two of the suggested algorithms, in section 5 we conclude and give some future
perspectives.
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Abstract. This paper discusses the effect of distance based parameter adaptation
on the population diversity of the Success-History based Adaptive Differential
Evolution (SHADE). The distance-based parameter adaptation was designed to
promote exploration over exploitation and provide better search capabilities of
the SHADE algorithm in higher dimensional objective spaces. The population
diversity is recorded on the 15 test functions from the CEC 2015 benchmark set
in two-dimensional settings, 10D and 30D, to provide the empiric evidence of
a beneficial influence of the distance based parameter adaptation in comparison
with the objective function value based approach. . . .

Keywords: Distance-based parameter adaptation, SHADE, Population diversity

1 Introduction

The original Differential Evolution (DE) algorithm that was proposed for global opti-
mization by Storn and Price in 1995 [1] has three main control parameters: population
size NP, scaling factor F and crossover rate CR. As it was shown in [2] and [3], the
setting of these control parameters is crucial for the performance of the algorithm, and
there seems to be no universal setting, which is in accordance with the famous no free
lunch theorem [4]. Due to this fact, researchers in the DE field are trying to overcome
this problem with self-adaptive variants of DE, which do not require fine-tuning of the
control parameters to the given optimization task. And since the DE research commu-
nity is fairly active, there have been numerous updated and improved DE versions over
the last few years. Various directions of the research were recently nicely surveyed in
the Das, Mullick and Suganthan’s paper [5].

One of the most successful novel variants of adaptive DE algorithm is Success-
History based Adaptive Differential Evolution (SHADE) [6]. Its superiority was proved
on the last five CEC competitions in continuous optimization, where SHADE or its up-
dated variants placed on the top ranks (CEC2013 – SHADE placed 3rd, CEC2014 –
L-SHADE [7] placed 1st, CEC2015 – SPS-L-SHADE-EIG [8] placed 1st, CEC2016 –
LSHADE EpSin [9] placed on joint 1st place, CEC2017 – jSO [10] placed 1st). There-
fore, the SHADE algorithm was selected as a basis for this study.

The adaptive mechanism in Tanabe and Fukunaga’s SHADE is based on the im-
provement in objective function value from the original individual to the trial individual.
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Scaling factor and crossover rate values that were used for the generation of successful
trial individuals are then subject to the comparison based on the objective function value
improvement and the ones with the highest improvement have the highest weights in
the forthcoming calculation of the values that will be stored in the algorithm’s memory
of successful control parameter settings. Thus, this approach benefits exploitation of
the objective space rather than the exploration. Due to this fact, the algorithm is subject
to premature convergence when solving optimization problems of higher dimensional-
ities. In this paper, a novel approach, which considers the distance between the original
and trial individuals rather than the objective function improvement is analyzed from
the perspective of performance and its effect on population diversity. Maintaining of
the population diversity is an interesting task which was lately studied in numerous
papers. In [11], auto-enhanced population diversity is proposed, which regenerates in-
dividuals components based on the detection of stagnation in respective dimension, in
[12], a diversity-based population strategy serves for population size management, in
[13], population diversity is maintained by scattering individuals from the centre of the
population whenever the variance in objective function values of the population drops
below certain level, and finally in [14], population diversity is maintained at a prede-
fined value by increasing or decreasing the population size after each generation. The
aforementioned approaches to population diversity maintaining are based on artificial
changes to the population, whereas approach proposed in this paper is based on a differ-
ent view at the information exchange between individuals, where the position change is
more valuable for the optimization than the objective function improvement. Therefore,
such approach does not lose any of the population shared knowledge, which might be
lost in artificial changes of the population. Proposed distance based adaptation is also
applicable to any SHADE-based algorithm.

The rest of the paper is structured as follows: The next Section describes original
DE algorithm, the Section that follows provides the description of SHADE and Section
4 is devoted to the distance based parameter adaptation mechanism. Sections 5, 6 and 7
deal with experimental setting, results, their discussion and conclusion correspondingly.

2 Differential Evolution

The DE algorithm is initialized with a random population of individuals P, that repre-
sent solutions of the optimization problem. The population size NP is set by the user
along with other control parameters – scaling factor F and crossover rate CR.

In continuous optimization, each individual is composed of a vector x of length D,
which is a dimensionality (number of optimized attributes) of the problem, and each
vector component represents a value of the corresponding attribute, and of objective
function value f (x).

For each individual in a population, three mutually different individuals are selected
for mutation of vectors and the resulting mutated vector v is combined with the original
vector x in the crossover step. The objective function value f (u) of the resulting trial
vector u is evaluated and compared to that of the original individual. When the quality
(objective function value) of the trial individual is better, it is placed into the next gen-
eration, otherwise, the original individual is placed there. This step is called selection.
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The process is repeated until the stopping criterion is met (e.g., the maximum number
of objective function evaluations, the maximum number of generations, the low bound
for diversity between objective function values in population).

The following sections describe four steps of DE: Initialization, mutation, crossover,
and selection.

2.1 Initialization

As aforementioned, the initial population P with NP individuals is randomly generated.
For this purpose, the individual vector xi components are generated by Random Number
Generator (RNG) with uniform distribution from the range which is specified for the
problem by lower and upper bound (1).

x j,i = U
[
lower j, upper j

]
for j = 1, . . . , D (1)

Where i is the index of a current individual, j is the index of current attribute and D is
the dimensionality of the problem.

In the initialization phase, a scaling factor value F and crossover value CR has to be
assigned as well. The typical range for F value is [0, 2] and for CR, it is [0, 1].

2.2 Mutation

In the mutation step, three mutually different individuals xr1, xr2, xr3 from a population
are randomly selected and combined by the mutation strategy. The original mutation
strategy of canonical DE is “rand/1” and is depicted in (2).

vi = xr1 + F (xr2 − xr3) (2)

Where r1 , r2 , r3 , i, F is the scaling factor, and vi is the resulting mutated vector.

2.3 Crossover

In the crossover step, the mutated vector vi is combined with the original vector xi to
produce the trial vector ui. The binomial crossover (3) is used in canonical DE.

u j,i =

{
v j,i if U [0, 1] ≤ CR or j = jrand

x j,i otherwise (3)

Where CR is the used crossover rate value, and jrand is an index of an attribute that has
to be from the mutated vector vi (this ensures generation of a vector with at least one
new component).
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2.4 Selection

The selection step ensures that the optimization will progress towards better solutions
because it allows only individuals of better or at least equal objective function value to
proceed into the next generation G+1 (4).

xi,G+1 =

{
ui,G if f

(
ui,G

) ≤ f
(
xi,G

)

xi,G otherwise (4)

Where G is the index of the current generation. The basic concept of the DE algorithm
is depicted in pseudo-code below.
Algorithm pseudo-code 1: DE

Algorithm 1 DE
1: Set NP, CR, F and stopping criterion;
2: G = 0, xbest = {};
3: Randomly initialize (1) population P = (x1,G,. . . ,xNP,G);
4: Pnew = {}, xbest = best from population P;
5: while stopping criterion not met do
6: for i = 1 to NP do
7: xi,G = P[i];
8: vi,G by mutation (2);
9: ui,G by crossover (3);

10: if f (ui,G) < f (xi,G) then
11: xi,G+1 = ui,G;
12: else
13: xi,G+1 = xi,G;
14: end if
15: xi,G+1 → Pnew;
16: end for
17: P = Pnew, Pnew = {}, xbest = best from population P;
18: end while
19: return xbest as the best found solution

3 SHADE

In SHADE, the only control parameter that can be set by the user is population size NP,
the other two (F, CR) are adapted to the given optimization task, a new parameter H is
introduced, which determines the size of F and CR value memories. The initialization
step of the SHADE is, therefore, similar to DE. Mutation, however, is completely dif-
ferent because of the used strategy “current-to-pbest/1” and the fact that it uses different
scaling factor value Fi for each individual. Crossover is still binary, but similarly to the
mutation and scaling factor values, crossover rate value CRi is also different for each in-
dividual. The selection step is the same, and therefore following sections describe only
the different aspects of initialization, mutation and crossover.
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3.1 Initialization

As aforementioned, the initial population P is randomly generated as in DE, but addi-
tional memories for F and CR values are initialized as well. Both memories have the
same size H and are equally initialized, the memory for CR values is titled MCR, and
the memory for F is titled MF . Their initialization is depicted in (5).

MCR,i = MF,i = 0.5 for i = 1, . . . ,H (5)

Also, the external archive of inferior solutions A is initialized. Since there are no solu-
tions so far, it is initialized empty A = Ø, and its maximum size is set to NP.

3.2 Mutation

Mutation strategy “current-to-pbest/1” was introduced in [15] and unlike “rand/1”, it
combines four mutually different vectors pbest , r1 , r2 , i (6).

vi = xi + Fi

(
xpbest − xi

)
+ Fi (xr1 − xr2) (6)

Where xpbest is randomly selected from the best NP × p individuals in the current pop-
ulation. The p value is randomly generated for each mutation by RNG with uniform
distribution from the range [pmin, 0.2]. Where pmin = 2/NP. Vector xr1 is randomly se-
lected from the current population, and vector xr2 is randomly selected from the union
of current population P and archive A. The scaling factor value Fi is given by (7).

Fi = C
[
MF,r, 0.1

]
(7)

Where MF,r is a randomly selected value (by index r) from MF memory and C stands
for Cauchy distribution, therefore the Fi value is generated from the Cauchy distribution
with location parameter value MF,r and scale parameter value 0.1. If the generated value
Fi > 1, it is truncated to 1, and if it is Fi ≤ 0, it is generated again by (7).

3.3 Crossover

Crossover is the same as in (3), but the CR value is changed to CRi, which is generated
separately for each individual (8). The value is generated from the Gaussian distribution
with a mean parameter value of MCR.r, which is randomly selected (by the same index
r as in mutation) from MCR memory and standard deviation value of 0.1.

CRi = N
[
MCR,r, 0.1

]
(8)

3.4 Historical Memory Updates

Historical memories MF and MCR are initialized according to (5), but its components
change during the evolution. These memories serve to hold successful values of F and
CR used in mutation and crossover steps (successful regarding producing trial individ-
ual better than the original individual). During one generation, these successful values
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are stored in corresponding arrays SF and SCR. After each generation, one cell of MF

and MCR memories is updated. This cell is given by the index k, which starts at 1 and
increases by 1 after each generation. When it overflows the memory size H, it is reset
to 1. The new value of k-th cell for MF is calculated by (9) and for MCR by (10).

MF,k =

{
meanWL (SF) if SF , ∅

MF,k otherwise (9)

MCR,k =

{
meanWL (SCR) if SCR , ∅

MCR,k otherwise (10)

Where meanWL() stands for weighted Lehmer (11) mean.

meanWL (S) =

∑|S|
k=1 wk • S 2

k∑|S|
k=1 wk • S k

(11)

Where the weight vector w is given by (12) and is based on the improvement in objective
function value between trial and original individuals.

wk =
abs

(
f
(
uk,G

) − f
(
xk,G

))
∑|SCR |

m=1 abs
(
f
(
um,G

) − f
(
xm,G

)) (12)

Moreover, since both arrays SF and SCR have the same size, it is arbitrary which size
will be used for the upper boundary for m in (12).

The pseudo-code of the SHADE algorithm is depicted below.

4 Distance based Parameter Adaptation

The original adaptation mechanism for scaling factor and crossover rate values uses
weighted forms of means (11), where weights are based on the improvement in ob-
jective function value (12). This approach promotes exploitation over exploration, and
therefore might lead to premature convergence, which could be a problem especially in
higher dimensions.

The distance approach is based on the Euclidean distance between the trial and
the original individual, which slightly increases the complexity of the algorithm by
replacing simple difference by Euclidean distance computation for the price of stronger
exploration. In this case, scaling factor and crossover rate values connected with the
individual that moved the furthest will have the highest weight (13).

wk =

√∑D
j=1

(
uk, j,G − xk, j,G

)2

∑|SCR |
m=1

√∑D
j=1

(
um, j,G − xm, j,G

)2
(13)

Therefore, the exploration ability is rewarded, and this should lead to avoidance of the
premature convergence in higher dimensional objective spaces. Such approach might
also be useful for constrained problems, where constrained areas could be overcame by
increased changes of individual’s components.
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Algorithm 2 SHADE
1: Set NP, H and stopping criterion;
2: G = 0, xbest = {}, k = 1, pmin = 2/NP, A = Ø;
3: Randomly initialize (1) population P = (x1,G,. . . ,xNP,G);
4: Set MF and MCR according to (5);
5: Pnew = {}, xbest = best from population P;
6: while stopping criterion not met do
7: SF = Ø, SCR = Ø;
8: for i = 1 to NP do
9: xi,G = P[i];

10: r = U[1, H], pi = U[pmin, 0.2];
11: Set Fi by (7) and CRi by (8);
12: vi,G by mutation (6);
13: ui,G by crossover (3);
14: if f (ui,G) < f (xi,G) then
15: xi,G+1 = ui,G;
16: xi,G → A;
17: Fi → SF , CRi → SCR;
18: else
19: xi,G+1 = xi,G;
20: end if
21: if |A|>NP then
22: Randomly delete an ind. from A;
23: end if
24: xi,G+1 → Pnew;
25: end for
26: if SF , Ø and SCR , Ø then
27: Update MF,k (9) and MCR,k (10), k++;
28: if k > H then
29: k = 1;
30: end if
31: end if
32: P = Pnew, Pnew = {}, xbest = best from population P;
33: end while
34: return xbest as the best found solution
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5 Experimental Setting

The CEC 2015 benchmark set states that each function should be run 51 times and the
stopping criterion should be set to 10,000 × D objective function evaluations. These
requirements were adhered to, and two-dimensional settings were selected 10D and
30D to provide a robust comparison. The convergence and population diversity were
recorded for both versions of the tested algorithm – original SHADE and SHADE with
distance based parameter adaptation abbreviated to Db SHADE. The used population
diversity measure is described in the next section.

Both algorithm variants had the same set of variable parameters – population size
NP was set to 100, the maximum size of the optional archive |A| was set to NP, and the
historical memory size H was set to 10.

5.1 Population Diversity Measure

The Population Diversity (PD) measure used in this paper was described in [14] and is
based on the sum of deviations (15) of individual’s components from their correspond-
ing means (14).

x j =
1

NP

NP∑

i=1

xi j (14)

PD =

√√√
1

NP

NP∑

i=1

D∑

j=1

(
xi j − x j

)2
(15)

Where i is the population member iterator and j is the vector component iterator.

6 Results and Discussion

The comparative results for both dimensional settings are in Tables 1 and 2, where the
last column depicts the result of the Wilcoxon rank-sum test with significance level of
0.05. No significant difference in performance between SHADE and Db SHADE al-
gorithm is represented by “=” sign when the SHADE algorithm performs significantly
better; there would be “-” sign and when the distance based version performs signifi-
cantly better, the “+” sign is used. As it can be seen from results in Table 1, the perfor-
mance of both versions is comparable with only one win for the Db SHADE algorithm.
This was suspected as the dimensionality of the problem is quite low, and the SHADE
algorithm does not tend to converge prematurely. The situation is more interesting in
the second table, where there are 6 significantly different results in performance, and all
of them are in favor of the Db SHADE algorithm.

The convergence comparison plots and population diversity plots with confidence
intervals are provided for the six functions in 30D, where the performance is signifi-
cantly different in Figures 1 to 3. In these figures, it can be seen that the population
diversity is maintained longer, which leads to a more explorative manner during the
exploration phase of the algorithm, while the exploitation phase is still present in the
later generations. As for the other functions from the benchmark with no significant
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difference in results, the population diversity is also higher in the case of Db SHADE
algorithm, but it does not help to improve the optimization result significantly. There-
fore, the further study of the on-line effects of the distance based adaptation is needed.

Table 1. SHADE vs. Db SHADE on CEC2015 in 10D.

SHADE Db SHADE
f Median Mean Median Mean Result
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =

2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =

3 2.00E+01 1.89E+01 2.00E+01 1.92E+01 =

4 3.07E+00 2.97E+00 3.06E+00 2.98E+00 =

5 2.21E+01 3.42E+01 2.98E+01 4.52E+01 =

6 2.20E-01 2.97E+00 4.16E-01 8.08E-01 =

7 1.67E-01 1.88E-01 1.73E-01 1.91E-01 =

8 8.15E-02 2.69E-01 4.28E-02 2.06E-01 =

9 1.00E+02 1.00E+02 1.00E+02 1.00E+02 =

10 2.17E+02 2.17E+02 2.17E+02 2.17E+02 =

11 3.00E+02 1.66E+02 3.00E+02 2.01E+02 =

12 1.01E+02 1.01E+02 1.01E+02 1.01E+02 +

13 2.78E+01 2.78E+01 2.79E+01 2.76E+01 =

14 2.94E+03 4.28E+03 2.98E+03 4.66E+03 =

15 1.00E+02 1.00E+02 1.00E+02 1.00E+02 =

7 Conclusion

This paper provided an analysis of the effect of distance based parameter adaptation in
SHADE algorithm to population diversity. The analysis was done on two test cases –
15 test functions from the CEC2015 benchmark set in 10D and 30D. The presumption
that the effect will be more visible in higher dimensional setting was confirmed. It can
be seen, that the diversity of the population is maintained for a longer period, therefore
prolonging the exploration phase and avoiding premature convergence of the algorithm.
This is in turn beneficial for the result of the optimization.

However, there is still too much of unused computational time and the tendency for
premature convergence is still strong. Therefore, the future research direction for the
authors is to address these issues.
Acknowledgements. This work was supported by the Ministry of Education, Youth and
Sports of the Czech Republic within the National Sustainability Programme Project no.
LO1303 (MSMT-7778/2014), further by the European Regional Development Fund un-
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Table 2. SHADE vs. Db SHADE on CEC2015 in 30D.

SHADE Db SHADE
f Median Mean Median Mean Result
1 3.73E+01 2.62E+02 2.12E+01 2.42E+02 =

2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =

3 2.01E+01 2.01E+01 2.01E+01 2.01E+01 =

4 1.41E+01 1.41E+01 1.32E+01 1.31E+01 =

5 1.55E+03 1.50E+03 1.54E+03 1.52E+03 =

6 5.36E+02 5.73E+02 3.37E+02 3.48E+02 +

7 7.17E+00 7.26E+00 6.81E+00 6.74E+00 +

8 1.26E+02 1.21E+02 5.27E+01 7.38E+01 +

9 1.03E+02 1.03E+02 1.03E+02 1.03E+02 +

10 6.27E+02 6.22E+02 5.29E+02 5.32E+02 +

11 4.53E+02 4.50E+02 4.10E+02 4.16E+02 +

12 1.05E+02 1.05E+02 1.05E+02 1.05E+02 =

13 9.52E+01 9.50E+01 9.47E+01 9.50E+01 =

14 3.21E+04 3.24E+04 3.22E+04 3.24E+04 =

15 1.00E+02 1.00E+02 1.00E+02 1.00E+02 =

Fig. 1. Convergence plots (top) and population diversity plots (bottom) of CEC2015 test functions
f6 (left) and f7 (right) in 30D.
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Fig. 2. Convergence plots (top) and population diversity plots (bottom) of CEC2015 test functions
f8 (left) and f9 (right) in 30D.

Fig. 3. Convergence plots (top) and population diversity plots (bottom) of CEC2015 test functions
f10 (left) and f11 (right) in 30D.
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by Joining Theory and Practice (ImAppNIO), and Action IC406, High-Performance
Modelling and Simulation for Big Data Applications (cHiPSet).
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Abstract. This paper compares four different methods for handling
the roaming behavior of fireflies in the firefly algorithm. The problems
of boundary constrained optimiza-tion forces the algorithm to actively
keep the fireflies inside the feasible area of possible solutions. The re-
cent CEC17 benchmark suite is used for the perfor-mance comparison
of the methods and the results are compared and tested for sta-tistical
significance.

Keywords: Firefly Algorithm, Boundary, Levy flight

1 Introduction

Firefly Algorithm (FA) [1], [2] is one of the modern and versatile optimization
algorithms developed by Yang in 2008. Since then, the FA has proven its robust
perfor-mance either on single objective [3] or many/multi-objective optimization
problems [4]. Recently, many new modifications have been introduced to improve
the results and overall quality of FA. Modifications like Levy flights [5], or chaos-
driven FA [6] show the large potential of this modern algorithm.

One of the tasks left to discuss lies in the question what to do if fireflies (or
particles in general) try to violate defined boundaries by particular optimization
problem. When optimizing the real problem, very often are optimized parameters
limited. This is caused in many cases due to simple physical nature of the problem
(for example length cannot be in negative numbers). The violation of particle
could happen whenever a new position is evaluated thanks to the nature of the
metaheuristic optimization algorithm. Select the most suitable border strategy
is a difficult task as the numerous similar studies for PSO show [7], [8].

Since there are no such studies for FA available in the literature, we have
decided to perform and present this original experimental research. In this paper,
three relatively common borders strategies (or rather methods) are implemented
and compared on CEC17 benchmark set [9]. Also, a new hypersphere border
strategy [10], initially developed for PSO, is also tested and compared given its
promising results on some test functions.

The paper is structured as follows. The FA and its Levy flight modifica-
tion are described in Section 2. The border strategies are in detail described in
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Section 3. The experiment setup is detailed in Section 4. Section 5 contains sta-
tistical overviews of the results and performance comparisons obtained during
the evaluation on benchmark set. Finally, the paper is concluded in Section 6.

2 Firefly Algorithm

This optimization nature-based algorithm was developed and introduced by
Yang in 2008 [1]. The fundamental principle of this algorithm lies in simulating
the mating behavior of fireflies at night when fireflies emit light to attract a
suitable partner. The main idea of Firefly Algorithm (FA) is that the objective
function value that is optimized is associated with the flashing light of these
fireflies. The author for simplicity set a couple of rules to describe the algorithm
itself:

• The brightness of each firefly is based on the objective function value.
• The attractiveness of a firefly is proportional to its brightness. This means

that the less bright firefly is lured towards, the brighter firefly. The brightness
depends on the environment or the medium in which fireflies are moving and
decreases with the distance between each of them.

• All fireflies are sexless, and it means that each firefly can attract or be lured
by any of the remaining ones.

The movement of one firefly towards another one is then defined by equation
(1). Where x

′
i is a new position of a firefly i, xi is the current position of firefly

i and xj is a selected brighter firefly (with better objective function value). The
is a randomization parameter and sign simply provides random direction -1 or
1.

x
′
i = xi + β · (xj − xi) + α · sign (1)

The brightness I of a firefly is computed by the equation (2). This equation
of brightness consists of three factors mentioned in the rules above. On the
objective function value, the distance between two fireflies and the last factor is
the absorption factor of a media in which fireflies are.

I =
I0

1 + γrm
(2)

WhereIo is the objective function value, the γ stands for the light absorption
parameter of a media in which fireflies are and the m is another user-defined
coefficient and it should be set m ≥ 1. The variable r is the Euclidian distance(3)
between the two compared fireflies.

rij =

√√√√
d∑

k=1

(xi,k − xj,k)
2

(3)

Where rij is the Euclidian distance between fireflies xi and xj . The d is
current dimension size of the optimized problem.
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The attractiveness β (4) is proportional to brightness I as mentioned in rules
above and so these equations are quite similar to each other. The β0 is the initial
attractiveness defined by the user, the γ is again the light absorption parameter
and the r is once more the Euclidian distance. The m is also the same as in
equation (2).

β =
β0

1 + γrm
(4)

One of the recent and quite commonly used modifications of FA lies in the
introduction of Lévy flights [5], [11]. With this Lévy flights characteristic the
new modification of FA is called Lévy-flight Firefly Algorithm (LFA). This mod-
ification only customizes the computation of the position of fireflies described
originally in equation (1). The new modified version with Lévy flight is defined
in (5).

x
′
i = xi + β · (xj − xi) + α · sign

⊕
Lévy (5)

The Lévy stands for Lévy flight randomization together with λ being the
randomization parameter as in the original equation. The product

⊕
means

entrywise multiplications. The Lévy distribution is drawn as (6).

Lévy ∼ u = t−λ (6)

Where parameter λ is another user-defined variable that controls the Lévy
distribution described in [5] and it should be set in range 1 < λ ≤ 3. The
pseudocode below shows the fundamentals of FA operations.

Fig. 1. FA pseudocode.

3 Border Strategies

Every time, when a single objective function optimization problem has defined
a range where the best value is being found by the metaheuristic algorithm, one
of the many difficult tasks could arise to an operator or a user. After each step
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of an algorithm, in this case after position update of a firefly, the new position
should be checked if it lies in the appropriate range or boundaries (inside space
of feasible solution). In case that the new position of the particle is outside this
allowed region a certain correction has to be made. Several possible correction
methods or strategies could do the trick. However, select the most appropriate
is not an easy task since each of them could have a very different effect on
the algorithm ability to achieve a good solution. For this paper, the few most
common ones were selected and compared together to show how they could affect
the FA on different benchmark functions.

3.1 Hard borders

The particle (or in this case firefly) cannot cross the given boundaries in each
dimension. This strategy is very simple to implement and is described as (7).

x
′
i =




xi = bu, if xi > bu

xi = bl, if xi < bl

xi, otherwise
(7)

Where xi is the position of i firefly before boundary check, the x
′
i is a newly

updated position after the boundary check and the bu and bl are the upper and
lower boundary given to each dimension.

3.2 Random position

If a firefly violates the boundary in any dimension, the new position for this
firefly for a particular dimension is created between the lower and upper bound-
ary (with a pseudo-random uniform distribution). Again this strategy is rather
simple and very easy to implement.

3.3 Hypersphere

This strategy tries to simulate an endless hypersphere. To simplify this state-
ment, an example is given. If a firefly violates upper boundary limit, it appears
then in the search space but from the lower boundary. In other words, the up-
per boundary is neighboring the lower one in corresponding dimension and vice
versa.

This strategy also brings one interesting and also an important feature. The
firefly has now two options how to achieve a new position when flying towards
another firefly. The new possible way is throughout the boundaries which are
now passable. The modification of previous equation (5) is given in (8).

x
′
i = xi + β · vij + α · sign

⊕
Lévy (8)
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Where the vij is the vector of difference between particles i and j defined as
(9).

vij =





v̂ij , if |v̂ij | ≤ d
v̂ij mod (−d) , if (|v̂ij | > d ∧ |v̂ij | > 0)
v̂ij mod (+d) , if (|v̂ij | > d ∧ |v̂ij | ≤ 0)

(9)

The v̂ij and range d are computed by formulas (10) and (11), where bu and
bl are again the upper boundary and lower boundary limits and xi and xj are
the fireflies i and j.

v̂ij = xj − xi (10)

d =

∣∣bu − bl
∣∣

2
(11)

3.4 Reflection

The reflection strategy [7] reflects the particle back to feasible space of solution if
it tries to violate the defined borders. This strategy tries to emulate the reflection
characteristic of for example a mirror. For violated dimension, the correction of
a position of a particle is computed as (12). Where again the bu and bl are the
upper boundary limit and lower boundary limit.

x
′
i =




x

′
i = bu − (xi − bu) , if xi > bu

x
′
i = bl +

(
bl − xi

)
, if xi < bl

xi, otherwise

(12)

4 Experimental Setup

The experiments were performed on a set of well-known benchmark functions
CEC’17 which are detailly described in [9]. The tested dimensions were 10 and 30.
The maximal number of function evaluation was set as 10 000 · dim (dimension
size). The lower and upper boundary was as bl = −100 and bu = 100 according
to CEC’17 definition. The number of fireflies was set to 40 for both dimension
sizes. Every test function was repeated for 30 independent runs and the results
were statistically evaluated. The benchmark itself includes 30 test functions in
four categories: unimodal, multimodal, hybrid and composite types. The global
minimum of each function is easy to determine as it is 100 ·fi where i is an order
of the particular test function.

The parameters of LFA were experimentally set as α = 0.2, λ = 1.5, γ =0.01,
β0 = 0.5, and m = 1.

5 Results

The results of performed experiments are given in this section. Firstly, the results
overviews and comparions are presented in Table 1 and Table 2, which contain
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the simple statistic like mean, std. dev., min. and max. values. Further, examples
of convergence behavior of the compared methods are given in Figs. 2 – 5.

Furthermore, we present the Friedman ranks with critical distance evaluated
according to the Bonferroni Dunn post-hoc test for multiple comparisons. The
visual outputs of multiple comparisons with rankings are given in Figure 6. The
dashed line represents the critical distance from the best boundary method (the
lowest mean rank). The critical distance (CD) value for this experiment has been
calculated as 0.8586; according to the definition given in (13) and value qa =
2.5758; using k = 4 boundary methods and a number of data sets N = 30 (30
repeated runs). From the results, it is noticeable, that the hard border and the
reflective boundaries are the most favorable methods among the four compared.

CD = qa
√
k (k + 1) / (6N) (13)

Fig. 2. Convergence plots of CEC2017 test functions f3 (left) and f9 (right) in 10D.
The blue line stands for Hard borders strategy, the orange line is for Random position,
The Hypersphere is in green color and the Reflection is in red.

Fig. 3. Convergence plots of CEC2017 test functions f10 (left) and f15 (right) in 10D.
The blue line stands for Hard borders strategy, the orange line is for Random position,
The Hypersphere is in green color and the Reflection is in red.
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Fig. 4. Convergence plots of CEC2017 test functions f27 (left) and f28 (right) in 10D.
The blue line stands for Hard borders strategy, the orange line is for Random position,
The Hypersphere is in green color and the Reflection is in red.

Fig. 5. Convergence graph for f10 dimension 30. The blue line stands for Hard borders
strategy, the orange line is for Random position, The Hypersphere is in green color and
the Reflection is in red.

The illustrative comparisons depicted in Figures 2 – 5 supported by the
results of Friedmann rank tests lend weight to the argument that the hypersphere
strategy often gives the much slower convergence speed. Although, there are two
exceptions to this statement (Fig. 4 and Fig. 5). The other strategies frequently
reach almost the same results. The differences between these strategies become
noticeable with the increase of the dimension size.
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Fig. 6. Friedmann rank test comparison on CEC2017 test functions in 10D (left) and
30D (right) in 10D.
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Table 1. Statistical results for dimension 10 (mean, std. dev., min., max.)

FunctionHard Random Hypersphere Reflection

f1 1.38E06 7.85E05 4.81E05 4.39E06 1.44E06 6.64E05 3.84E05 3.10E06 6.42E09 6.12E09 3.10E08 1.97E10 1.55E06 1.10E06 5.17E05 5.28E06

f2 4.36E05 1.27E06 7.62E05 5.32E06 1.62E05 3.65E05 4.47E03 1.88E06 2.18E12 1.10E13 4.33E05 6.14E13 3.26E05 1.37E06 2.79E03 7.65E06

f3 2.59E03 1.97E03 5.67E02 9.83E03 2.51E03 1.71E03 5.54E02 8.09E03 1.74E04 9.02E03 6.72E03 4.20E04 2.44E03 1.59E03 6.99E02 7.70E03

f4 4.09E02 1.21E01 4.00E02 4.69E02 4.13E02 1.49E01 4.01E02 4.57E02 7.52E02 4.60E02 4.35E02 2.31E03 4.11E02 1.37E01 4.00E02 4.67E02

f5 5.37E02 1.11E01 5.11E02 5.63E02 5.43E02 1.12E01 5.18E02 5.70E02 5.67E02 2.04E01 5.20E02 6.11E02 5.38E02 9.92E00 5.14E02 5.65E02

f6 6.13E02 7.79E00 6.00E02 6.29E02 6.17E02 8.29E00 6.04E02 6.33E02 6.38E02 1.05E01 6.14E02 6.61E02 6.15E02 8.07E00 6.03E02 6.36E02

f7 7.37E02 5.74E00 7.23E02 7.49E02 7.36E02 5.64E00 7.26E02 7.51E02 8.61E02 9.53E01 7.54E02 1.08E03 7.36E02 5.78E00 7.22E02 7.48E02

f8 8.21E02 5.68E00 8.13E02 8.34E02 8.21E02 5.47E00 8.11E02 8.33E02 8.39E02 1.37E01 8.17E02 8.80E02 8.20E02 5.18E00 8.10E02 8.29E02

f9 9.12E02 2.84E02 9.00E02 1.03E03 9.06E02 1.13E01 9.00E02 9.40E02 1.52E03 3.48E02 9.00E02 2.44E03 9.10E02 2.60E01 9.00E02 1.04E03

f10 1.98E03 1.91E02 1.48E03 2.28E03 2.01E03 2.47E02 1.43E03 2.55E03 2.04E03 3.82E02 1.50E03 2.95E03 1.96E03 2.93E02 1.32E03 2.50E03

f11 1.15E03 3.77E01 1.11E03 1.25E03 1.14E03 2.99E01 1.11E03 1.28E03 1.64E03 6.23E02 1.12E03 4.12E03 1.13E03 1.73E01 1.11E03 1.17E03

f12 8.09E05 7.21E05 4.67E04 2.75E06 1.22E06 1.26E06 1.30E05 6.23E06 6.03E06 1.70E07 9.29E04 9.70E07 5.09E05 6.25E05 3.55E04 3.07E06

f13 8.00E03 2.79E03 2.35E03 1.54E04 8.71E03 3.82E03 3.03E03 2.09E04 1.29E04 5.62E03 3.70E03 2.90E04 7.50E03 2.92E03 2.71E03 1.44E04

f14 1.96E03 7.55E02 1.44E03 4.23E03 2.34E03 1.32E03 1.49E03 7.25E03 2.54E03 1.13E03 1.47E03 5.73E03 1.99E03 8.66E02 1.44E03 6.13E03

f15 4.12E03 2.32E03 1.89E03 1.16E04 4.15E03 1.64E03 1.85E03 8.45E03 3.25E03 9.22E02 1.82E03 5.45E03 3.88E03 1.83E03 1.67E03 8.49E03

f16 1.90E03 9.21E01 1.69E03 2.05E03 1.89E03 8.27E01 1.74E03 2.02E03 1.91E03 9.81E01 1.73E03 2.11E03 1.89E03 1.02E02 1.61E03 2.01E03

f17 1.75E03 1.42E01 1.72E03 1.79E03 1.75E03 1.25E01 1.72E03 1.78E03 1.78E03 3.24E01 1.73E03 1.86E03 1.76E03 1.19E02 1.73E03 1.79E03

f18 6.42E03 5.73E03 2.31E03 2.74E03 5.81E03 4.31E03 2.15E03 2.19E03 1.27E04 7.65E03 3.31E03 4.18E04 6.23E03 3.73E03 1.96E03 1.69E04

f19 3.09E03 1.40E03 1.94E03 7.63E03 3.14E03 1.33E03 1.93E03 8.12E03 4.09E03 2.51E03 1.94E03 1.29E04 3.42E03 1.41E03 1.95E03 8.04E03

f20 2.12E03 4.97E01 2.04E03 2.19E03 2.12E03 4.79E01 2.05E03 2.20E03 2.14E03 6.69E03 2.02E03 2.28E03 2.12E03 5.49E03 2.03E03 2.20E03

f21 2.28E03 5.75E03 2.20E03 2.35E03 2.30E03 5.58E03 2.20E03 2.36E03 2.33E03 4.46E01 2.21E03 2.40E03 2.30E03 4.49E01 2.20E03 2.35E03

f22 2.30E03 1.22E01 2.24E03 2.31E03 2.30E03 2.15E00 2.30E03 2.31E03 2.54E03 3.57E02 2.28E03 3.65E03 2.30E03 3.21E00 2.30E03 2.32E03

f23 2.65E03 4.08E01 2.46E03 2.69E03 2.66E03 2.01E01 2.63E03 2.72E03 2.77E03 5.28E01 2.65E03 2.87E03 2.65E03 6.45E01 2.32E03 2.71E03

f24 2.64E03 1.35E02 2.50E03 2.81E03 2.65E03 1.26E02 2.50E03 2.82E03 2.78E03 1.42E02 2.50E03 2.93E03 2.64E03 1.26E02 2.50E03 2.81E03

f25 2.92E03 2.21E01 2.89E03 2.94E03 2.91E03 5.82E01 2.61E03 2.94E03 3.18E03 3.00E02 2.92E03 3.99E03 2.92E03 2.16E01 2.89E03 2.94E03

f26 3.02E03 3.59E02 2.61E03 3.91E03 3.02E03 3.51E02 2.62E03 4.24E03 3.89E03 5.16E02 3.00E03 4.87E03 3.11E03 3.64E02 2.60E03 4.28E03

f27 3.13E03 2.39E01 3.10E03 3.19E03 3.16E03 2.88E01 3.11E03 3.22E03 3.19E03 5.82E00 3.16E03 3.20E03 3.15E03 3.22E01 3.10E03 3.24E03

f28 3.28E03 1.42E02 2.93E03 3.48E03 3.39E03 1.18E02 3.10E03 3.49E03 3.29E03 0.82E00 3.29E03 3.30E03 3.31E03 1.35E02 3.10E03 3.48E03

f29 3.24E03 3.31E01 3.18E03 3.31E03 3.24E03 3.75E01 3.18E03 3.34E03 3.33E03 8.19E01 3.19E03 3.49E03 3.26E03 4.82E01 3.19E03 3.38E03

f30 4.20E05 4.19E05 1.38E04 1.94E06 6.45E05 5.52E05 3.24E04 2.00E06 3.18E05 5.64E05 3.94E03 2.74E06 5.28E05 4.94E05 5.30E04 2.16E06
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Table 2. Statistical results for dimension 30 (mean, std. dev., min., max.)

FunctionHard Random Hypersphere Reflection

f1 1.02E10 1.90E09 7.20E09 1.42E10 1.07E10 2.39E09 7.00E09 1.64E10 1.21E11 1.71E10 9.19E10 1.65E11 1.03E10 2.85E09 5.89E09 1.82E10

f2 1.95E34 5.28E34 5.88E28 2.24E35 8.16E33 2.54E34 8.37E27 1.34E35 1.58E53 8.77E53 7.08E43 4.88E54 5.98E34 2.20E35 5.15E28 1.16E36

f3 6.46E04 1.39E04 3.81E04 9.88E04 5.59E04 1.06E04 3.84E04 7.90E04 1.84E05 3.36E04 1.32E05 2.64E05 6.05E04 9.94E03 4.49E02 8.10E04

f4 2.23E03 4.67E02 1.36E03 3.49E03 2.46E03 4.65E02 1.69E03 3.80E03 4.25E04 1.04E04 2.37E04 6.63E04 2.30E03 4.98E02 1.44E03 3.90E03

f5 7.89E02 2.33E01 7.50E02 8.50E02 7.90E02 1.51E01 7.49E02 8.11E02 1.12E03 5.41E01 1.02E03 1.20E03 7.92E02 2.19E01 7.21E02 8.29E02

f6 6.60E02 6.41E03 6.49E02 6.73E02 6.61E02 4.39E00 6.50E02 6.69E02 7.14E02 8.65E00 6.95E02 7.31E02 6.60E02 5.40E00 6.48E02 6.72E02

f7 1.08E03 3.78E01 1.01E03 1.15E03 1.06E03 3.40E01 1.00E03 1.13E03 3.19E03 2.91E02 2.42E03 3.83E03 1.07E03 2.94E01 9.93E02 1.13E03

f8 1.05E03 2.06E01 1.01E03 1.09E03 1.06E03 1.51E01 1.02E03 1.09E03 1.34E03 2.90E01 1.28E03 1.40E03 1.05E03 1.55E01 1.03E03 1.10E03

f9 5.54E03 1.00E03 3.58E03 7.98E03 5.17E03 6.77E02 3.28E03 6.74E03 2.20E04 3.26E03 1.36E04 2.93E04 5.10E03 8.09E02 3.72E03 7.08E03

f10 8.11E03 5.25E02 6.53E03 8.93E03 8.10E03 4.61E02 6.84E03 8.82E03 9.08E03 3.20E02 7.92E03 9.57E03 8.07E03 3.82E02 6.88E03 8.69E03

f11 3.19E03 9.12E02 2.06E03 5.87E03 3.29E03 6.67E02 2.00E03 4.66E03 2.28E04 6.89E03 1.17E04 3.73E04 3.57E03 1.20E03 2.13E03 6.84E03

f12 7.77E08 2.98E08 2.75E08 1.33E09 1.01E09 3.55E08 3.77E08 1.99E09 2.20E10 6.24E09 9.69E09 3.16E10 8.29E08 3.48E08 2.87E08 1.67E09

f13 1.80E07 9.75E06 4.25E06 5.10E07 1.89E07 9.93E06 4.91E06 4.85E07 8.34E09 5.93E09 5.78E08 2.08E10 2.00E07 1.15E07 6.51E06 5.17E07

f14 1.35E05 1.12E05 1.39E04 3.84E05 2.76E05 2.74E05 1.80E04 1.17E06 2.13E06 3.05E06 8.41E04 1.29E07 1.58E05 1.12E05 7.61E03 4.33E05

f15 1.37E06 1.13E06 2.09E05 6.76E06 1.13E06 8.47E05 1.78E05 3.53E06 1.32E08 2.26E08 1.84E06 1.17E09 1.30E06 7.37E05 1.49E05 3.83E06

f16 3.31E03 2.73E02 2.72E03 3.80E03 3.27E03 2.07E02 2.72E03 3.60E03 7.52E03 1.84E03 4.95E03 1.43E04 3.18E03 2.39E02 2.72E03 3.55E03

f17 2.18E03 1.26E02 2.00E03 2.49E03 2.21E03 1.62E02 1.92E03 2.55E03 4.36E03 1.19E03 2.66E03 8.19E03 2.18E03 1.18E02 1.96E03 2.44E03

f18 6.62E05 4.75E05 1.48E05 1.98E06 6.19E05 3.83E05 1.30E05 1.84E06 1.04E08 1.28E08 5.71E05 5.38E08 8.79E05 8.66E05 1.63E05 4.66E06

f19 3.35E06 1.96E06 8.50E05 8.56E06 3.42E06 2.43E06 7.65E05 1.06E07 1.03E09 1.13E09 1.59E06 4.05E09 3.54E06 2.09E06 5.62E05 9.40E06

f20 2.58E03 1.14E02 2.38E03 2.84E03 2.53E03 1.20E02 2.35E03 2.80E03 3.07E03 1.84E02 2.67E03 3.39E03 2.52E03 1.15E02 2.36E03 2.86E03

f21 2.52E03 4.76E01 2.33E03 2.57E03 2.52E03 3.97E01 2.38E03 2.58E03 2.88E03 4.66E01 2.72E03 2.96E03 2.53E03 4.14E01 2.34E03 2.58E03

f22 3.19E03 4.25E02 2.68E03 4.90E03 3.41E03 4.66E02 2.76E03 4.82E03 1.03E04 3.44E02 9.15E03 1.08E04 3.42E03 4.51E02 2.77E03 5.13E03

f23 3.01E03 6.04E01 2.81E03 3.09E03 3.09E03 4.45E01 3.02E03 3.20E03 3.80E03 1.27E02 3.50E03 4.01E03 3.04E03 4.73E01 2.94E03 3.14E03

f24 3.13E03 2.90E01 3.07E03 3.19E03 3.19E03 4.26E01 3.13E03 3.30E03 4.06E03 1.49E02 3.71E03 4.28E03 3.16E03 4.85E01 3.08E03 3.27E03

f25 3.15E03 6.21E01 3.05E03 3.32E03 3.14E03 4.54E01 3.05E03 3.24E03 1.55E04 3.67E03 9.10E03 2.70E04 3.13E03 4.83E01 3.04E03 3.24E03

f26 6.03E03 7.90E02 4.48E03 7.34E03 6.00E03 9.04E01 4.29E03 7.69E03 1.60E04 1.62E03 1.26E04 1.87E04 5.83E03 7.22E02 4.26E03 7.23E03

f27 3.47E03 4.33E01 3.39E03 3.55E03 3.61E03 5.43E01 3.50E03 3.74E03 3.20E03 6.16E-5 3.20E03 3.20E03 3.20E03 1.49E-4 3.20E03 3.20E03

f28 3.67E03 1.10E02 3.44E03 3.89E03 3.75E03 9.27E01 3.49E03 3.91E03 3.30E03 7.85E-5 3.30E03 3.30E03 3.30E03 1.28E-4 3.30E03 3.30E03

f29 4.47E03 1.52E02 4.20E03 4.74E03 4.54E03 1.88E02 4.22E03 4.86E03 2.05E04 2.68E04 5.35E03 1.20E05 4.55E03 1.94E02 3.88E03 4.95E03

f30 1.14E07 5.08E06 5.78E06 2.47E07 9.77E06 5.23E06 2.36E06 2.61E07 1.67E09 1.06E09 1.13E08 4.50E09 1.01E07 4.51E06 4.26E06 1.98E07
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6 Conclusion

In this original study, the impact of various border strategies on the performance
of the firefly algorithm is tested. The topic is actual due to the increasing variety
and complexity of optimization problems. As a benchmark for the performance
comparisons, the CEC 2017 set was used. It represents the most recent collection
of artificial optimization problems that vary in terms of modality and other
characteristics of the fitness landscape.

It may be concluded, that according to statistical data, the hard borders
and the reflection boundary strategy seem to be favorable over the other two
(random with slightly worse performance and hypersphere).

However, it seems that in the most cases, the border strategy does not have
a significant impact on the performance of the method (especially in lower di-
mensions). The hypersphere boundary model stands out, mostly in the negative
way. Despite the fact that remaining strategies behave almost identical on most
problems, the most favorable strategies could be either the reflection or random
position. These two strategies are often picked also for PSO [8].

Despite that, the results of this study are useful as an empirical study for
researchers dealing with firefly algorithm. This research will continue in the fu-
ture with exploring the performance of firefly algorithm with different boundary
strategies on different fitness landscape models and real-world problems, espe-
cially with a focus on the algorithm setup to achieve the best performance.
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495-498 (2008).

357 sciencesconf.org:bioma2018:188785



Population Diversity Analysis for the Chaotic based
Selection of Individuals in Differential Evolution

Roman Senkerik1[0000−0002−5839−4263], Adam Viktorin1[0000−0003−0861−0340], Michal
Pluhacek1[0000−0002−3692−2838], and Tomas Kadavy1[0000−0002−3341−4336]

Tomas Bata University in Zlin, Faculty of Applied Informatics, T. G. Masaryka 5555, 760 01,
Zlin Czech Republic

senkerik@utb.cz, aviktorin@utb.cz, pluhacek@utb.cz, kadavy@utb.cz

Abstract. This research deals with the modern and popular hybridization of
chaotic dynamics and evolutionary computation. It is aimed at the influence of
chaotic sequences on the population diversity as well as the algorithm perfor-
mance of the simple parameter adaptive Differential Evolution (DE) strategy:
jDE. Experiments are focused on the extensive investigation of the different ran-
domization schemes for the selection of individuals in DE algorithm driven by the
nine different two-dimensional discrete chaotic systems, as the chaotic pseudo-
random number generators. The population diversity and jDE convergence are
recorded on the 15 test functions from the CEC 2015 benchmark.

Keywords: Differential Evolution, Complex dynamics, Deterministic chaos, Pop-
ulation diversity, Chaotic map

1 Introduction

This research deals with the mutual intersection of the two computational intelligence
fields, which are the complex sequencing and dynamics given by the selected chaotic
systems, and evolutionary computation techniques (ECT’s).

Together with this persistent development in above-mentioned mainstream research
topics, the popularity of hybridizing of chaos and metaheuristic algorithms is growing
every year. Recent research in chaotic approach for metaheuristics uses various chaotic
maps in the place of pseudo-random number generators (PRNG).

The initial concept of embedding chaotic dynamics into the evolutionary/swarm al-
gorithms as chaotic pseudo-random number generator (CPRNG) is given in [1]. Firstly,
the Particle Swarm Optimization (PSO) algorithm with elements of chaos was intro-
duced as CPSO [2], followed by the introduction of chaos embedded Differential evo-
lution (DE) [3], PSO with inertia weigh strategy [4], and PSO with an ensemble of
chaotic systems [5]. Recently the chaos driven heuristic concept has been utilized in
several swarm-based algorithms like ABC algorithm [6], Firefly [7] and other meta-
heuristic algorithms [8] – [11], as well as many applications with DE [12].

The unconventional chaos-based approach is tightly connected with the importance
of randomization within heuristics as compensation of a limited amount of search
moves as stated in the survey paper [13]. This idea has been carried out in subsequent
studies describing different techniques to modify the randomization process [14], [15]
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and especially in [16], where the sampling of the points is tested from modified distribu-
tion. The importance and influence of randomization operations were also profoundly
experimentally tested in simple control parameter adjustment DE strategy [17].

The focus of this research is the deeper insight into the population dynamics of the
selected DE strategy (jDE) [18] when the directly embedded CPRNG is driving the
indices selection. Currently, DE [19] - [21] is a well-known evolutionary computation
technique for continuous optimization purposes solving many difficult and complex op-
timization problems. Many DE variants have been recently developed with the emphasis
on control parameters self-adaptivity. DE has been modified and extended several times
using new proposals of versions, and the performances of different DE variants have
been widely studied and compared with other ECTs. Over recent decades, DE has won
most of the evolutionary algorithm competitions in the leading scientific conferences
[22] – [26], as well as being applied to several applications.

The organization of this paper is following: Firstly, the motivation for this research
is proposed. The next sections are focused on the description of the concept of chaos
driven jDE, and the experiment background. Results and conclusion follow afterward.

2 Motivation and Related Research

Recently, chaos with its properties like ergodicity, stochasticity, self-similarity, and den-
sity of periodic orbits became very popular and modern tool for improving the perfor-
mance of various ECTs. Nevertheless, the questions remain, as to why it works, why it
may be beneficial to use the chaotic sequences for pseudo-random numbers driving the
selection, mutation, crossover or other processes in particular heuristics.

This research is an extension and continuation of the previous successful experiment
with the single/multi-chaos driven PSO [5] and jDE [27], where the positive influence
of hidden complex dynamics for the heuristic performance has been experimentally
shown. This research is also a follow up to previous initial experiments with differ-
ent sampling rates applied to the chaotic sequences resulting in keeping, partially/fully
removing of traces of chaos [28].

The motivation and the novelty of the research are given by the investigating the in-
fluence of chaotic sequences to the population diversity, connected with the algorithm
performance of the basic control parameter adjustment DE strategy: jDE. This strat-
egy was selected as a compromise between original simple DE and the most recent
Success-History based Adaptive Differential Evolution (SHADE) variants [26], where
the influence of chaotic dynamics may be suppressed by the complex adaptive process
and operations with the archive.

3 Differential Evolution

This section describes the basics of original DE and jDE strategies. The original DE
[19] has four static control parameters – a number of generations G, population size NP,
scaling factor F and crossover rate CR. In the evolutionary process of DE, these four
parameters remain unchanged and depend on the initial user setting. jDE algorithm,
on the other hand, adapts the F and CR parameters during the evolution. The mutation
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strategy for jDE is adapted from the original DE. The concept of essential operations
in jDE algorithm is shown in following sections, for a detailed description on either
original DE refer to [19] or for jDE see [18].

3.1 jDE

In this research, we have used jDE with original DE “rand/1/bin” (1) mutation strategy
and binomial crossover (2).

Mutation Strategies and Parent Selection The parent indices (vectors) are selected
either by standard PRNG with uniform distribution or by CPRNG in case of chaotic
versions. Mutation strategy “rand/1/bin” uses three random parent vectors with indexes
r1, r2 and r3, where r1 = U[1, NP], r2 = U[1, NP], r3 = U[1, NP] and r1 , r2 , r3.
Mutated vector vi,G is obtained from three different vectors xr1, xr2, xr3 from current
generation G with the help of scaling factor Fi as follows:

vi,G = xr1,G + Fi
(
xr2,G − xr3,G

)
(1)

Crossover and Selection The trial vector ui,G which is compared with original vector
xi,G is completed by crossover operation (2). CRi value in jDE algorithm is not static.

u j,i,G=

{
v j,i,G if U [0, 1]≤CRi or j= jrand

x j,i,G otherwise (2)

Where jrand is a randomly selected index of a feature, which has to be updated
(jrand = U[1, D]), D is the dimensionality of the problem.

The vector which will be placed into the next generation G+1 is selected by elitism.
When the objective function value of the trial vector ui,G is better than that of the orig-
inal vector xi,G, the trial vector will be selected for the next population. Otherwise, the
original will survive. (3).

xi,G+1 =

{
ui,G if f

(
ui,G

)
< f

(
xi,G

)

xi,G otherwise (3)

3.2 Parameter adjustment in jDE

The generated ensemble of two control parameters Fi and CRi is assigned to each i-th
individual of the population and survives with the solution if an individual is transferred
to the new generation. The initialization of values of F and CR is designed to be either
fully random with uniform distribution for each individual in the population or can be
set according to the recommended values in the literature. If the newly generated solu-
tion is not successful, i.e., the trial vector has worse fitness than the compared original
active individual; the new (possibly) reinitialized control parameters values disappear
together with not successful solution. The both aforementioned DE control parameters
may be randomly mutated with predefined probabilities τ1 and τ2. If the mutation con-
dition happens, a new random value of CR ∈ [0, 1] is generated, possibly also a new
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value of F which is mutated in [Fl , Fu]. These new control parameters are after that
stored in the new population. Input parameters are typically set to Fl = 0.1, Fu = 0.9,
τ1 = 0.1, and τ2 = 0.1 as originally given in [18], [20].

4 Chaotic Systems for CPRNGs

Following nine well known and frequently utilized discrete dissipative chaotic maps
were used as the CPRNGs for jDE. With the settings as in Table 1, systems exhibit
typical chaotic behavior [29].

Table 1. Definition of chaotic systems used as CPRNGs

Chaotic system Notation Parameters values

Arnold Cat map
Xn+1 = Xn + Yn(mod1)
Yn+1 = Xn + kYn(mod1) k = 2.0

Burgers map
Xn+1 = aXn − Y2

n
Yn+1 = bYn + XnYn

a = 0.75 and b = 1.75

Delayed Logistic
Xn+1 = AXn (1 − Yn)
Yn+1 = Xn

A = 2.27

Dissipative Stan-
dard map

Xn+1 = Xn + Yn+1(mod2π)
Yn+1 = bYn + k sin Xn(mod2π) b = 0.1 and k = 8.8

Hénon map
Xn+1 = a − x2

n + byn

Yn+1 = xn
a = 1.4 and b = 0.3

Ikeda map
Xn+1 = γ + µ(Xn cos φ + Yn sin φ)
Yn+1 = µ(Xn sin φ + Yn cos φ)
φ = β − α/

(
1 + X2

n + Y2
n

) α = 6, β = 0.4, γ = 1 and
µ = 0.9

Lozi Map
Xn+1 = 1 − a |Xn| + bYn

Yn+1 = Xn
a = 1.7 and b = 0.5

Sinai map
Xn+1 = Xn + Yn + δ cos 2πYn(mod1)
Yn+1 = Xn + 2Yn(mod1) δ = 0.1

Tinkerbell map
Xn+1 = X2

n − Y2
n + aXn + bYn

Yn+1 = 2XnYn + cXn + dYn
a = 0.9, b = -0.6, c = 2 and
d = 0.5

5 The Concept of ChaosDE with Discrete Chaotic System as
driving CPRNG

The general idea of CPRNG is to replace the default PRNG with the chaotic system. As
the chaotic system is a set of equations with a static start position, we created a random
start position of the system, to have different start position for different experiments.
Thus we are utilizing the typical feature of chaotic systems, which is extreme sensitivity
to the initial conditions, popularly known as “butterfly effect.” This random position is
initialized with the default PRNG, as a one-off randomizer. Once the start position of
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the chaotic system has been obtained, the system generates the next sequence using its
current position. Used approach is based on the following definition (4):

rndreal = mod (abs (rndChaos) , 1.0) (4)

5.1 Experiment design

For the population diversity analysis and performance comparisons in this research, the
CEC 15 benchmark was selected. The dimension D was set to 10. Every instance was
repeated 51 times with the maximum number of objective function evaluations set to
100 000 (10,000 × D). The convergence and population diversity were recorded for all
tested algorithm – original jDE and nine versions of C jDE with different CPRNGs. All
algorithms used the same set of control parameters: population size NP = 50 and initial
settings F = 0.5, CR = 0.8. Experiments were performed in the environment of Java;
jDE, therefore, has used the built-in Java linear congruential pseudorandom number
generator representing traditional pseudorandom number generator in comparisons.
The Population Diversity (PD) measure used in this paper was described in [30] and is
based on the sum of deviations (6) of individual’s components from their corresponding
means (5).

x j =
1

NP

NP∑

i=1

xi j (5)

PD =

√√√
1

NP

NP∑

i=1

D∑

j=1

(
xi j − x j

)2
(6)

Where i is the population member iterator and j is the vector component iterator.

6 Results

Statistical results for the comparisons are shown in comprehensive Tables 2 and 3. Ta-
ble 2 shows the mean results, with the highlighting based on the Wilcoxon sum-rank test
with the significance level of 0.05; performed for each pair of original jDE and C jDE.
Ranking of the algorithms given in Figure 1 was evaluated based on the Friedman test
with Nemenyi post hoc test. Figures 2 – 5 depict the graphical comparisons of the con-
vergence plots and corresponding population diversity plots provided for the selected
five benchmark functions. The Fig. 6 shows the detailed comparisons of population di-
versity plots (with confidence intervals) for the selected pair of jDE and C jDE where
the performance is different. The results discussion is in the next section.
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Fig. 1. Ranking of the all algorithms based on the 51 runs and 15 functions of CEC2015 bench-
mark in 10D. Dashed line represents the Nemenyi Critical Distance.
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Fig. 2. Convergence plot (left) and population diversity plot (right) of CEC2015 f1 in 10D.
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Fig. 3. Convergence plot (left) and population diversity plot (right) of CEC2015 f2 in 10D.
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Fig. 4. Convergence plot (left) and population diversity plot (right) of CEC2015 f3 in 10D.
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Fig. 5. Convergence plot (left) and population diversity plot (right) of CEC2015 f14 in 10D.

jDE

500 1000 1500 2000
G

155

160

165

170

PD

jDE

500 1000 1500 2000
G

50

100

150

PD

Fig. 6. Detailed population diversity plots for the selected pair of jDE and C jDE driven by Sinai
chaotic system (left f3) and (right f14), CEC2015 in 10D.
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Table 2. Results comparisons for the mean results of jDE and C jDE; CEC 2015 Benchmark set, 10D, 51 runs

system\f 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
jDE 9.79E-08 0. 19.7916 4.1515 126.70 6.1719 0.1724 0.2298 100.207 218.29 101.59 101.839 27.96 3613.67 100.
Arnold
C jDE

2.74E-07 0. 18.8335 4.2794 145.24 9.4381 0.1567 0.5323 100.209 219.42 107.41 101.839 27.62 3544.63 100.

Burgers
C jDE

4.4106 † 0. 19.2706 4.0942 173.63 † 54.0442 † 0.2997 10.2154 † 100.226 † 243.52 † 148.95 † 101.995 28.56 4406.91 † 100.

DeLo
C jDE

0.5832 † 0. 18.3945 3.8806 166.44 † 33.1935 † 0.1855 1.9563 100.204 233.58 † 154.45 † 101.884 28.68 3777.18 100.

Dissipative
C jDE

3.62E-05 † 0. 19.6439 4.0253 139.11 9.7203 0.1662 0.5663 100.205 219.95 136.56 101.815 27.91 3756.54 100.

Henon
C jDE

3.22E-06 † 0. 18.4531 4.1839 126.96 2.4113 0.1728 0.9548 † 100.218 † 219.42 124.95 101.851 27.53 3488.54 100.

Ikeda
C jDE

3.55E-05 † 0. 19.7317 3.9634 137.59 6.1798 0.1592 1.5255 100.210 219.03 154.26 † 101.820 27.71 3557.67 100.

Lozi
C jDE

1.32E-04 † 0. 18.9552 4.1586 134.54 6.9613 0.1561 1.3641 100.215 219.59 142.43 101.859 28.09 3688.73 100.

Sinai
C jDE

9.54E-08 0. 18.4859
‡

3.9828 127.20 10.3090 0.1569 1.3596 100.208 219.34 130.81 101.880 27.73 3466.09 100.

Tinkerbell
C jDE

24.6343 † 0. 19.1244 3.9863 148.39 39.4389 † 0.2460 8.5815 † 100.215 231.44 † 125.99 † 101.798 28.06 4417.27 † 100.

The bold values in Table 2 depict the best-obtained results (based on the mean values); italic values are considered to be significantly
different (according to the Wilcoxon sum-rank test with the significance level of 0.05; performed for each pair of original jDE and C jDE;
† - performance of C JDE was significantly worse, ‡- significantly better).
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Table 3. The best (minimum found) results for jDE and C jDE; CEC 2015 Benchmark set, 10D, 51 runs

system\f 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total
jDE 9.79E-08 0. 19.7916 4.1515 126.703 6.1719 0.1724 0.2298 100.207 218.286 101.59 101.839 27.961 3613.67 100. 2
Arnold
C jDE

0. 0. 2.50E-
09

1.2559 37.1301 0. 0.0369 7.11E-07 100.152 216.537 0.4638 101.245 24.006 2935.54 100. 6

Burgers
C jDE

7.01E-04 0. 0.1154 0. 10.3074 2.14E-03 0.0197 6.37E-06 100.154 216.556 1.6532 101.308 21.749 2935.54 100. 5

DeLo
C jDE

4.92E-07 0. 5.5139 0. 25.7866 0.2081 0.0310 3.69E-06 100.121 216.537 1.0906 100.994 23.384 2935.54 100. 5

Dissipative
C jDE

0. 0. 6.5179 1.1008 37.3398 0. 0.0464 1.69E-05 100.108 216.537 0.7982 100.948 23.818 2935.54 100. 5

Henon
C jDE

0. 0. 2.39E-
04

1.2774 14.2125 0. 0.0549 9.69E-05 100.134 216.537 0.9954 100.928 23.614 100. 100. 6

Ikeda
C jDE

0. 0. 11.9019 1.8199 40.4215 0. 0.0381 3.29E-06 100.121 216.537 0.8272 100.801 24.465 100. 100. 7

Lozi
C jDE

0. 0. 6.4830 1.5781 33.1746 0. 0.0497 3.38E-04 100.129 216.537 0.4429 101.238 25.882 2935.54 100. 6

Sinai
C jDE

0. 0. 3.24E-
04

1.1066 23.3597 0. 0.0333 3.38E-07 100.126 216.537 0.5749 101.067 23.732 2935.54 100. 6

Tinkerbell
C jDE

3.15E-04 0. 7.3022 1.0075 33.8032 0. 0.0093 1.30E-04 100.148 216.539 1.1523 100.409 23.073 100. 100. 6

The bold values in Table 3 depict the best-obtained results (based on the min. values).
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7 Conclusions

The primary aim of this original work is to provide a more in-depth insight into the inner
dynamics of indices selection in DE. The focus is to experimentally investigate the
influence of different types of unconventional non-random (chaotic) sequences to the
population diversity as well as to the performance of the simple parameter adjustment
DE strategy, which is jDE. The findings can be summarized as:

– Obtained graphical comparisons and data in Tables 2 and 3 support the claim that
jDE is sensitive to the chaotic dynamics driving the selection (mutation) process
through CPRNG. At the same time, it is clear that (selection of) the best CPRNGs
are problem-dependent. By using the CPRNG inside the heuristic, its performance
is (significantly) different: either better or worse against other compared versions.

– The performance comparisons presented in Tables 2 and 3 reveal the fact that only
in one case the performance of C jDE is statistically significantly better (f3 and
Sinai map). Mostly the performance of compared pairs of jDE and C jDE is sim-
ilar, or in some cases, the chaotic versions performed significantly worse. Such a
worse performance was repeatedly observed for two chaotic maps: Burgers and
Tinkerbell. On the other hand, these two maps usually secured robust progress to-
wards function extreme (local) followed by premature population stagnation phase,
thus repeatedly secured finding of minimum values. Overall, C jDE versions seem
to be very effective regarding finding min. values of the objective function (See
Table 3).

– The population diversity plots in Figures 2 - 5 supports the above-mentioned facts.
It is possible to identify 3 groups of population diversity behavior in comparison
with original j DE: less decreasing (Sinai, Henon, Ikeda maps), more decreasing
(Lozi, Arnold, Dissipative maps) and significantly more decreasing (Delayed Lo-
gistic, Tinkerbell, Burgers maps).

– The selected paired diversity plots in Fig 6 show that the diversity of the population
is maintained higher for a longer period. Therefore the exploration phase supported
by Sinai map based CPRNG is longer. This in return is beneficial for the result of
the optimization.

– The population diversity analysis supports the theory, that unique features of the
chaos transformed into the sequencing of CPRNG values may create the subpopu-
lations (or inner neighborhood selection schemes, i.e., lower population diversity).
Thus the metaheuristic can benefit from the searching within those sub-populations
and quasi-periodic exchanges of information between individuals (see Fig 3 for the
sudden increase of diversity – the new search region was explored and attracted
some (group) of individuals). However, lot of analyses and different scenarios (di-
mensional settings, etc.) are required in the future.

The research of randomization issues and insights into the inner dynamic of meta-
heuristic algorithms was many times addressed as essential and beneficial. The re-
sults presented here support the approach for multi-chaotic generators [31] or ensem-
ble systems, where we can profit from the combined/selective population diversity
(i.e. exploration/exploitation) tendencies, sequencing-based either stronger or moderate
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progress towards the function extreme, all given by the smart combination of multi-
randomization schemes.
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Abstract. Multi-Objective Evolutionary Algorithms (MOEAs) are one
of the most used search techniques in Search-Based Software Engineer-
ing (SBSE). However, MOEAs have many control parameters which must
be configured for the problem at hand. This can be a very challenging
task by itself. To make matters worse, in Multi-Objective Optimization
(MOO) different aspects of quality of the obtained Pareto front need to
be taken in to account. A novel method called MOCRS-Tuning is pro-
posed to address this problem. MOCRS-Tuning is a meta-evolutionary
algorithm which uses a chess rating system with quality indicator ensem-
ble. The chess rating system enables us to determine the performance
of an MOEA on different problems easily. The ensemble of quality in-
dicators ensures that different aspects of quality are considered. The
tuning was carried out on five different MOEAs on the Integration and
Test Order Problem (ITO). The experimental results show significant
improvement after tuning of all five MOEAs used in the experiment.

Keywords: Multi-objective optimization, Evolutionary algorithms, Pa-
rameter tuning, Search-based software engineering, Class integration and
testing order, Chess rating system.

1 Introduction

Search-Based Software Engineering (SBSE) is an approach where search-based
optimization algorithms are used to solve problems in software engineering [1].
One of the many areas that SBSE tackles is software testing [2]. Software test-
ing plays an important role in the software development life cycle, since it has
a direct impact on the quality of the software. However, generating tests is a
very difficult and costly task [3]. Since software testing is so complex, and exact
solutions cannot be found in reasonable time using deterministic methods, it
is no surprise that SBSE algorithms were applied in industrial cases [4,5]. One
of the most popular methods used in SBSE are Multi-Objective Evolutionary
Algorithms (MOEAs), which return a Pareto fronts. This enables the users to
choose a solution with the best trade-off between different objectives. However,
evolutionary algorithms have different control parameters. The choice of control
parameters has a great impact on the performance of an evolutionary algorithm
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[6]. Setting control parameters can be very challenging, and is known as a pa-
rameter tuning problem [7]. Tuning of algorithms is very important. It can find
good control parameters which improve the algorithms performance. Also, with
tuned algorithms we can perform a fair comparison [8]. Algorithms with default
parameters perform well on benchmark problems, but this is usually not the case
for real-world problems, since they are not studied in literature and we have little
knowledge about them.

To tackle this problem, we propose Tuning with a Chess Rating System
(CRSTuning) [8], adapted for Multi-Objective Optimization called MOCRS-
Tuning. The tuning process is guided by a self-adaptive Differential Evolution
(jDE) [9], which searches for optimal control parameter. By using a self-adaptive
algorithm, we removed the additional parameters needed for the tuning process.
The solutions in the population are evaluated with a Chess Rating System with
a Quality Indicator Ensemble (CRS4MOEA/QIE) [10]. The Quality Indicator
Ensemble ensures that the outcome of each candidate solution is evaluated with
different Quality Indicators (QIs), making sure that different aspects of quality
are taken into account [11]. We know by the No Free Lunch (NFL) theorem [12]
that it is not possible to find optimal parameter settings, but this holds only if
all possible search problems are considered. In our experiments, we limited our-
selves to the Integration and Testing Order (ITO) problem [13], which has been
shown that MOEAs can solve efficiently [14]. The ITO problem is concerned
with the order in which software components are to be integrated and tested,
such that the stubbing cost is minimised [15].

In our experiments, we applied the novel MOCRS-Tuning method to five
different MOEAs. The tuning was conducted on 8 real-world object-oriented
and aspect-oriented systems [4,13,14]. The comparison was conducted using the
Evolutionary Algorithms Rating System (EARS) framework [16]. The EARS
framework uses a chess rating system to rank and compare evolutionary algo-
rithms. The results show significant improvement of all five MOEAs with tuned
control parameters compared with the non-tuned (default) versions.

The remainder of the paper is organised as follows. A brief description of
the ITO problem is given in Section 2. The chess rating system for evolutionary
algorithms is described in Section 3. Section 4 describes the proposed tuning
method. The execution of the experiment and results are presented in Section
5. Finally, the paper concludes in Section 6.

2 Integration and Testing Order

When performing a unit test in order to detect interaction problems between
units, they need to be integrated and tested in order. If a unit is required by
other units but is not yet available, it has to be emulated. An emulated unit is
called a stub, and it imitates some or all functions of the actual unit [15]. A stub
must be created for each unit that is not available during the integration process.
Stubs are not desired for three reasons. First, stubs can be more complex than the
code they simulate. Second, since they require understanding of the semantics of
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the simulated functions their generation cannot be fully automated. Third, some
stubs may be more error prone than their real counterparts [17]. Therefore, to
reduce the stubbing cost, such a sequence must be determined that it minimises
the stubbing cost [14]. This, however, is not a trivial task, and is known as the
Integration and Testing Order problem [13]. Since different factors (objectives)
influence the stubbing process, the problem should be treated as multi-objective
[14]. This makes it very suitable to be solved by MOEAs [13]. In our experiments
we used two objectives: Number of attributes and number of methods, which
have to be emulated in the stub if the dependencies between two modules are to
be broken. We used eight real systems in our experiments: MyBatis, AJHSQLDB
(HyperSQL DataBase), BCEL (Byte Code Engineering Library), JHotDraw,
HealthWatcher, JBoss, AJHotDraw, TollSystems. Information about the systems
such as number of dependencies, classes, aspects, and Lines of Code (LOC) is
given in Table 1.

Table 1. Details of the systems used for the ITO problem in the experiments.

Name Dependencies Classes Aspects LOC

AJHotDraw 1592 290 31 18586

AJHSQLDB 1338 276 15 68550

MyBatis 1271 331 - 23535

JHotDraw 809 197 - 20273

JBoss 367 150 - 8434

HealthWatcher 289 95 22 5479

BCEL 289 45 - 2999

TollSystems 188 53 24 2496

Select two
players

Select a
problem

Evaluate approximation
sets with QI

Decide game outcome

(win, lose or draw)

Fig. 1. A single game in CRS4MOEA/QIE.

3 Chess rating system for evolutionary algorithms

For comparing and evaluating MOEAs we used a novel method called Chess
Rating System with a Quality Indicator Ensemble (CRS4MOEA/QIE) [10].
CRS4MOEA/QIE uses the Glicko-2 system [18] to rate and rank players. A
chess rating system is used to estimate a chess player’s skill level. Although it
was initially intended to rank chess players, it can be applied to any competitor-
versus-competitor game. In our case, players are MOEAs. Figure 1 shows a single
game between two players (MOEAs). Each MOEA returns an approximation set
for the given problem. The two approximation sets are evaluated with a QI from
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the ensemble, and the outcome of the game is decided. In a tournament players
play multiple games against all participating players for each given problem. A
tournament can have multiple independent runs. The outcomes of the games
are used to update each player’s rating R and rating deviation RD [18]. Each
unrated player has his rating set to 1500 and RD to 350 before the tournament
starts. The rating represents a player’s skill; the higher the rating, the higher
the skill. If the player performs better than expected his rating increases, and
decreases if they perform worse than expected. The rating deviation indicates
how reliable a player’s rating is. A small RD means a player plays often and
has a reliable rating. In contrast, if the RD is high, his rating is unreliable. The
chess rating system was used for comparison of MOEAs and for their evaluation
in the tuning process.

Input: MOEA, 

problems, QIs,

control parameters

Return MOEA with 

highest rating

Create initial population

of MOEAs with random

control parameters

Evaluate initial population

using CRS4MOEA/QIE

Is stopping

criteria met?

Create new population

of MOEAs using DE

Evaluate new population

using CRS4MOEA/QIE

Yes

No

Fig. 2. MOCRS-Tuning flowchart.

4 MOCRS-Tunning method

Proposed method (MOCRS-Tunning) uses a meta-evolutionary approach in or-
der to tune the control parameters of MOEAs. Figure 2 shows a simple flowchart
of the tuning process. As input, we give it an MOEA, the problems for which
it will be tuned, QIs for evaluation of results, and control parameters with their
ranges to be tuned. First an initial population is created where the control pa-
rameters are generated randomly. The initial population is then evaluated using
CRS4MOEA/QIE. In the tournament, multiple versions of the given MOEA
with different control parameters are competing with each other on the given
problems. At the end of the tournament, each version of MOEA receives its
rating R, which reflects its performance (fitness). In the main loop, the tun-
ing process takes place and is guided by jDE and CRS4MOEA/QIE. jDE is
used to produce new solutions (MOEAs with different control parameters) and
CRS4MOEA/QIE to evaluate the newly produced solutions. In order to evaluate
the new solution it plays in a tournament with the old population. If the new
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solution has a higher rating compared to its current version, it will be added to
the new population, otherwise the current solution is added. The new population
needs to be evaluated, since the rating of a player depends on its current oppo-
nents. When the stopping criteria is meet the MOEA with the highest rating in
the population is returned.

5 Experiment

The experiment consists of three parts: Comparing MOEAs with their ’de-
fault’ control parameters, tuning of MOEAs, and comparing MOEAs with tuned
control parameters against MOEAs with default parameters. The experiment
was performed on five MOEAs: IBEA [19], MOEAD [20], NSGA − II [21],
PESA − II [22] and SPEA2 [23]. The Quality Indicator ensemble contained
five different QIs in all experiments: IGD+ [24], HV [25], R2 [26], MS [27] and
Iε+ [28]. The diversity of QIs ensures that all the aspects of quality are covered
[10]. In all experiments, MOEAs solved the ITO problem on eight previously
mentioned systems for which the stopping criteria was set to 300,000 evalua-
tions for each system. In the first and last parts we conducted a tournament for
the comparison using CRS4MOEA/QIE incorporated in EARS. The tournament
in the first and third parts contained the same problems and QIs as the tuning
process. For the comparison of MOEAs before and after tuning, the number of
independent runs in the tournament was set to 15. At the end of the tournament
we plotted Rating Intervals (RI) of each MOEA using their rating and RD. Us-
ing RIs, we are 95% confident that the player’s rating R is within an interval
[R− 2RD,R+ 2RD]. If the rating intervals of two MOEAs do not overlap, then
they are significantly different, whereas, conversely, it is not necessarily true

5.1 Comparing MOEAs with default control parameters

Finding default parameters can be challenging, since they depend on the type of
problem. The default values are commonly provided by the author. However they
are usually available only for continuous types of problems, and rarely for com-
binatorial types such as the ITO problem. Therefore, we set the default values
of control parameters for all MOEAs based on the source code of combinatorial
operators found in the jMetal framework [29]. We limited the tuning process to
three control parameters: Population size µ, crossover probability ηc and muta-
tion probability ηm. Based on the jMetal framework, the default values of the
parameters are 100 for µ, 1.0 for ηc and 0.2 for ηm. The results of the tournament
are displayed in the form of Rating Intervals. The RD value of all participat-
ing MOEAs reached its minimum value (50) [30]. The Rating Intervals of all
MOEAs with default control parameters are shown in Figure 3. The algorithms
are ranked based on the rating, where the algorithm with the highest rating is
first. From the results, we can observe that NSGAII performed the best, and is
significantly better (Rating Intervals do not overlap) than MOEAD. PESAII,
IBEA and SPEA2 have a very similar rating and, consequently, their intervals
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overlap almost entirely. There is a high probability that the order of these three
MOEAs would change if the tournament were repeated.

Rating Interval

1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000

Rating

NSGAII

PESAII

IBEA

SPEA2

MOEAD

Fig. 3. 95% rating intervals of all MOEAs with default parameters.

Table 2. Control parameters of all five MOEAs after tuning.

µ ηc ηm

IBEA 173 0.63 0.9

MOEAD 192 0.50 0.98

NSGAII 108 1.00 0.86

PESAII 110 0.37 1.0

SPEA2 190 0.74 0.87

5.2 Tuning MOEAs

In the tuning process we limited the search space of control parameters. For pop-
ulation size the lower bound is set to 10 and the upper bound to 200. Mutation
and crossover probability have the same lower bound 0.1 and upper bound 1.0.
The population size (number of MOEAs) for jDE was set to 20, and the stopping
criteria was set to 20 generations. Table 2 shows the parameters of each MOEA
after the tuning process. We can observe that different MOEAs have very dif-
ferent control parameters, except for mutation ηm. All MOEAs seem to prefer
a higher mutation probability, meaning that higher exploitation is required for
the given problems.

5.3 Comparing MOEAs with tuned control parameters

After all MOEAs underwent tuning, we repeated the tournament from the first
part of the experiment for each MOEA. In each tournament, an MOEA with
tuned control parameters played against MOEAs which had their default pa-
rameters. This enabled us to detect performance improvement of each MOEA
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easily. The resulting Rating Intervals are displayed in Figures 4 to 8. The first
Figure (Figure 4), shows the improvement of IBEA with tuned parameters. By
comparing the results to Figure 3, we can see that IBEA jumped from third
to first place whilst the other MOEAs are almost unchanged. The tuning had a
big impact on IBEA’s performance, since it is significantly better than all other
MOEAs. Figure 5 shows the comparison of tuned MOEAD against MOEAs
with default parameters. Compared to Figure 3, MOEAD jumped from last
to first place meaning, it is no longer significantly worse than NSGAII. Even
though MOEAD is first, it is not significantly better than any other MOEA.
Since Rating Intervals of all MOEAs overlap no claims about one MOEA out-
performing another can be made. Figure 6 shows the performance of the tuned
NSGAII. With default parameters it was already first, and significantly better
than MOEAD. As we can see from the results, this does not mean it cannot
be improved. With tuned parameters it performs significantly better than the
rest. As we can see from Figure 7, tuning also had a positive effect on PESAII.
It took the first place from NSGAII, and is significantly better than the other
MOEAs. The tuning of PESAII also had an effect on the rating of MOEAD. It
is no surprise that MOEAD is outperformed by PESAII, since it is tuned and
it was already outperformed by NSGAII. However, now it is also outperformed
by IBEA, and the Rating Intervals are barely overlapping with SPEA2. This
means that a bigger portion of MOEADs rating can be attributed to victories
against PESAII. Figure 8 show the performance improvement of tuned SPEA2.
As with all other MOEAs, it also jumped to the first place. With tuned parame-
ters it outperforms every MOEA except NSGAII. The improvement of SPEA2
also had a bigger impact on the rating of MOEAD. Its Rating Interval shifted
to the left, but not as much when compared with the tuned version of SPEA2.
For a better comparison we performed a tournament where all tuned versions of
MOEAs played against each other. The resulting Rating intervals are displayed
in Figure 9. We can see that tuning had the biggest impact on MOEAD. It
is on par NSGAII, whereas with default parameters it performed significantly
worse (Figure 3). The remaining MOEAs improved almost identically. The order
of SPEA2, PESAII and IBEA has switched, but their intervals overlap like
they do with default parameters. However, the end user is most interested in
the obtained approximation set. Therefore, we plotted the approximation set for
system AJHSQLDB obtained by MOEAD with default and tuned parameters
on Figure 10. The results show that the approximation set obtained with tuned
MOEAD has both better convergence as spread. Overall, we can observe that
MOCRS-Tuning was very successful at improving the performance of MOEAs,
which was reflected in their rating and obtained approximation sets. The drastic
changes in the performance after tuning implies that control parameters play a
very important role in their execution, giving us a good reason as to why tun-
ing is important, not only in real-world applications, but also when conducting
comparisons amongst MOEAs.
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IBEA-tuned

NSGAII

PESAII

SPEA2

MOEAD

Fig. 4. Comparing IBEA with tuned parameters to MOEAs with default parameters.
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MOEAD-tuned

NSGAII
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SPEA2

Fig. 5. Comparing MOEAD with tuned parameters to MOEAs with default parame-
ters.

Rating Interval
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Fig. 6. Comparing NSGAII with tuned parameters to MOEAs with default parame-
ters.

377 sciencesconf.org:bioma2018:188935



Rating Interval

1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000

Rating

PESAII-tuned

NSGAII

IBEA

SPEA2

MOEAD

Fig. 7. Comparing PESAII with tuned parameters to MOEAs with default parame-
ters.
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Fig. 8. Comparing SPEA2 with tuned parameters to MOEAs with default parameters.
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Fig. 9. Comparing all tuned versions of MOEAs.
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Fig. 10. Comparing approximation fronts of MOEAD with MOEAD − tuned for
system AJHSQLDB.

6 Conclusion

In this paper we presented a novel tuning method for multi-objective algorithms
called MOCRS-Tuning. The method uses a jDE for the search of optimal parame-
ters and a chess rating system with a Quality Indicator Ensemble for evaluation
of MOEAs. The tuning was performed on five different MOEAs. All MOEAs
were tuned for the real-world ITO problem on eight systems. All experiments
were conducted in the EARS framework. For the comparison between MOEAs
before and after tuning, and for the evaluation of solutions in the tuning pro-
cess, we used CRS4MOEA/QIE. The results have shown that tuned versions
of MOEAs have improved significantly compared to their versions with default
parameters. This has proven that every MOEA has a benefit when tuning is
performed, and that more emphasis needs to be given to control parameters
when using MOEAs. Since the tuning process incorporated a Quality Indicator
Ensemble, we have assured that different aspects of quality were considered in
the tuning process. Because we used eight systems in the tuning process, it was
extremely time-consuming. Therefore, each algorithm was tuned only once. The
tuning process for one MOEA takes approximately 23 hours on a computer with
an Intel(R) Core(TM) i7-4790 3.60 GHz CPU and 16 GB of RAM.

For future work, we would like to speed up the tuning process, which would
enable additional tuning runs. In order to know with greater certainty whether
the parameters are suitable for a wider set of problems, tuned MOEAs need to be
run on additional systems which were not included in the tuning process. We also
intend to compare the results of tuned MOEAs with a state-of-the-art method
called Hyper-heuristic for the Integration and Test Order Problem (HITO) [4].
This would show us if a well tuned MOEA can compete with a state-of-the-art
algorithm. Additionally, we would like to tune MOEAs on problems with higher
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numbers of objectives, to see how the number of objectives affects the tuning
process of control parameters.
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Abstract. Recently, the use of surrogate models for robustness assess-
ment has become popular in various research fields. In this paper, we
investigate whether it is advantageous to use the sample data to build a
model instead of computing the robustness measures directly. The results
suggest that if the quality of the surrogate model cannot be guaranteed,
their use can be harmful to the optimization process.
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1 Introduction

The goal of robust engineering design is to optimize performance criteria while
minimizing the effect of manufacturing and operational uncertainties, i.e. finding
a solution that is robust to uncertain conditions [1]. Often in computer-aided au-
tomated design based on finite element analysis (FEA), one solution evaluation
may take from a few seconds to several hours of computation, and conventional
robustness analysis (e.g. Monte-Carlo simulation) can require a large number of
evaluations. For this reason, most robust design schemes are considered unreal-
istic for practical applications.

In this context, surrogate models have been used in lieu of expensive simu-
lation code to estimate statistical measures of robustness [2–5]. The estimation
of statistical quantities, e.g. mean and variance, is not trivial. For instance, [5]
suggests that, in some circumstances, global surrogate models are not able to
provide accurate estimates of the required quantities. Thus, in [2] and [5], in-
stead of using a global surrogate model, local surrogates, fitted with samples in
the neighborhood of the point of interest, are used to estimate robustness.

The use of surrogate models implies the existence of sample data. Besides, the
use of local surrogate models implies the existence of data in the neighborhood
of the point of interest. If that is the case, one has samples to estimate the
robustness directly which in turn brings us to the following question: Do we
need surrogate models at all?

In order to investigate this question, we test the framework introduced in [2]
and [5] with 4 different types of surrogates plus a surrogate-less (direct calcula-
tion) version in a set of benchmark analytical problems. In the tests, in addition
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to the type of surrogate, we also vary the number of variables and the number
of samples selected for surrogate construction. We compare the surrogate mod-
els in terms of the accuracy of the provided estimates, the insensitivity to the
number of samples and their distribution, and also in terms of the optimiza-
tion algorithm effectiveness. Finally, we use the surrogate-assisted robust design
method in a bi-objective robust optimization problem related to the design of a
Surface-mounted Permanent Magnet (SPM) motor.

2 Robust optimization

In mathematical terms a general optimization problem can be stated as:

min f(x) s. t. x ∈ F (1)

where, f(x) is the objective function, x is the vector of design variables and
F represents the feasible region. The formulation shown in Eq. (1) does not
take into account the effect of the uncertainties that often arise in real-world
optimization problems. Thus, a more general definition for the objective function
f(x) would be: f = f(x + δ, α) where δ represents perturbations to the design
variables which arise from production tolerances and α are the uncontrollable
factors that arise from environmental and material uncertainties.

Robust optimization is a family of optimization approaches that tries to
account for uncertainties as the ones defined above. The main goal is to find the,
so called, robust solutions which present good performance and small variability
with respect to the sources of uncertainty.

This loose definition of robustness can be translated to different formulations
of the robust optimization problem such as, for instance, the minimization of the
worst-case scenario. In some design problems, however, the worst-case approach
can be regarded as too conservative, especially when the worst-cases are very
unlikely to happen. Therefore, in this paper, we are going to focus on statistical
measures of robustness.

The most commonly used statistical measure of the robustness of a given
design is the expected value (mean) given by:

µf (x) = E[f |x] =

∫

U(x)

f(x + δ, α)p(δ, α)dδdα (2)

where, p(δ, α) is the joint probability distribution of the uncertainties and U(x)
is an uncertainty set and defines the domain of δ and α for each x.

Although the mean gives a more realistic measure of the expected perfor-
mance, sometimes, it is also important to know the performance variability [4].
Therefore, in order to obtain robust solutions (designs) some measure of disper-
sion, such as the standard deviation σ, may also be incorporated in the problem
formulation. σ is defined by:

σf (x) =
√∫
U(x)

(f(x + δ, α)− E[f |x])
2
p(δ, α)dδdα (3)
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3 Surrogate-assisted robust optimization

An important concern in robust optimization is the computational cost related
to the robustness estimation, which normally involves the use of Monte-Carlo
sampling (MCS). When the sampling involves complex computational models,
such as, finite element analysis (FEA), the estimation of robustness may become
impractical. To reduce the computational cost, the framework described in Fig. 1
which uses an evolutionary algorithm (EA) as a search mechanism and surrogate
models for robustness estimation was proposed in [2].

This algorithm keeps an archive with all the solutions ever evaluated. In step
(6), a Latin-hypercube sampling plan (LHS) is generated in the uncertainty set,
U , of each offspring for robust assessment. The algorithm searches the archive
for the closest neighbor of each point in the LHS. If two points have the same
closest neighbor, the farther point from the point of interest in the archive is
evaluated with expensive simulation code. Thus, the algorithm takes advantage
of previously evaluated solutions and guarantees a reasonably well distributed set
of samples. In the next sections a set of possible surrogate models is presented.

1. initialize parent population
2. initialize archive
3. while not terminate do
4. generate offspring
5. for each offspring do
6. select archive points for surrogate construction
7. if no representative set of samples available then
8. get extra sample points
9. evaluate the extra sample points

10. add extra points to the archive
11. end if
12. construct local surrogate
13. evaluate robustness using surrogate
14. end for
15. select best offspring as new parent population
16. end while

Fig. 1. Surrogate-assisted algorithm for robust optimization

3.1 Polynomial models

Given a n× 1 vector of responses, y, and a n× d matrix of observed variables,
X, where n is the number of samples, the relationship between y and X can be
described as:

y = Xβ + ε (4)

where, β is the vector of regression coefficients, and ε the error vector.
The model “training” consists of finding the least squares estimators, b, that

minimize the loss function defined in Eq. (5).
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L =

n∑

i=1

ε2i = ε′ε = (y −Xb)T (y −Xb) (5)

By taking the derivatives of Eq. (5) with respect to the regression coefficients
it is possible to find (see [6] for the detailed derivation) that the least squares
estimators of β are given by:

b = (XTX)−1XTy (6)

Thus, a prediction at an unseen point x is ŷ(x) = xb.

3.2 Kriging

Kriging [7] is an interpolation method that expresses the sought, unknown, func-
tion y(x) as a combination of a global model β with local deviations Z(x):

y(x) = β + Z(x) (7)

where, β approximates the global trend of the original function while Z(x) cre-
ates local deviations in order to approximate a possible multimodal behavior.

Mathematically, Z(x) is the realization of a stochastic process with zero
mean, variance σ2 and covariance given by:

Cov[Z(xi), Z(xj)] = σ2R (8)

R is the correlation matrix of all the observed data defined as:

R =



R(x1,x2) · · · R(x1,xn)

...
. . .

...
R(x1,xn) · · · R(xn,xn)


 (9)

where, R(xi,xj) is the correlation function defined as:

R(xi,xj) = exp

(
−

k∑

l=1

θl|xil − xjl |2
)

(10)

Predicted values at new points are given by:

ŷ(x) = β̂ + r(x)TR−1(y − 1β̂) (11)

where 1 is the unit vector, β̂ is the estimated value of β given by Eq. (14), y
contains the response values of the sample points and rT is the correlation vector
between an untried point x and the sampled data points xi, i = 1, ..., n.

r(x)T = [R(x,x1), R(x,x2), ..., R(x,xn)] (12)

Training the kriging model consists of maximizing the likelihood function,
given by Eq. (13), in order to find the unknown parameters θl.
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ln(L(θ)) = −n2 ln(2π)− n
2 ln(σ2)− n

2 ln(|R(θ)|)
− (y−1β̂)TR(θ)−1(y−1β̂)

2σ2

(13)

β̂ = (1TR(θ)−1y)/(1TR(θ)−11) (14)

σ̂2 = ((y − 1β̂)TR(θ)−1(y − 1β̂))/n (15)

3.3 Radial basis functions neural networks

Radial basis functions neural networks (RBFNN) can be implemented in numer-
ous ways. Here, the RBFNN with Gaussian basis functions [3] will be used. This
RBFNN has one hidden layer with n neurons, where n is also the sample size,
and one output layer. Each neuron in the hidden layer has the following form:

φk(x, ck) = exp
(
−‖x−ck‖

2
2

σ2
k

)
1 ≤ k ≤ N (16)

where x is some input vector, ck is the kth training point which is also the center
of the basis function φk(·), and σ2

k controls the basis function width.
The output layer is the weighted sum of the hidden layer outputs. Given a

set of width parameters σk and training points T , consisting of input vectors ci
and targets yi, the RBFNN can be concisely expressed in matrix form as:

Φw = Y = [y1, y2, · · · , yN ]T (17)

where,

Φ =



φ(c1, c2) · · · φ(c1, cn)

...
. . .

...
φ(c1, cn) · · · φ(cn, cn)


 (18)

If all the centers are pairwise different, the matrix Φ is positive-definite and
invertible [3]. Thus, the weight vector w can be computed through Eq. (17).
Once the weights are computed, predictions at untried points x are given by:

ŷ(x) = r(x) ·w
r(x) = [φ(x, c1), φ(x, c2), · · · , φ(x, cN )]T

w = [w1, w2, · · · , wN ]T
(19)

3.4 Generalized regression neural network

The Generalized Regression Neural Network (GRNN) is a simple yet powerful
regression model proposed in [8]. Different from other artificial neural networks
(ANNs), GRNNs do not use backpropagation for training. Instead, the predic-
tions are directly derived from the sampled data using the following formula:
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ŷ(x) =

∑n
i=1 yi exp

(
− (x−xi)T (x−xi)

2σ2

)

∑n
i=1 exp

(
− (x−xi)T (x−xi)

2σ2

) (20)

where, xis and yis are the sampled input vector and the respective response
values. σ is known as the smoothing parameter and controls the width of the
Gaussian functions.

4 Computational experiments

In order to test the described surrogates and the optimization framework de-
scribed in Section 3, three benchmark functions proposed in [9] for robust opti-
mization have been used. They are defined as follows:

f7a(x) = H(x2)×
(∑D

i=3 50x2i − S(x)
)

+ 1.5

H(x) = 1√
2π
πe−0.5( x−1.5

0.5
)2 + 2√

2π
πe−0.5( x−1.5

0.1
)2

S(x) =

{
−x1.51 , if x2 < 0.8
−x1 , if x2 ≥ 0.8

xi ∈ [0.2, 1.8]

(21)

f10a(x) = H(x2)×
(∑D

i=3 50x2i − x0.51

)
+ 1

H(x) = e−x
2
cos(6πx)−x

4
+ 0.5

xi ∈ [0.2, 0.8]

(22)

f16a(x) = G(x)

×
((

1−
√

x1
G(x)

− x1
G(x)

sin(4πx1)
)

+H(x1)
)

×
((

1−
√

x2
G(x)

− x2
G(x)

sin(4πx2)
)

+H(x2)
)

+ 0.5

H(x) =
e−2x2 sin(12π(x+ π

24
))−x

3
+ 0.5

G(x) = 1 + 10
∑D
i=2 xi
D

xi ∈ [0.2, 0.8]

(23)

The uncertainty set is defined as U(x) = [x−0.2,x+0.2] for the three problems.

4.1 Surrogate models for robustness assessment

The problem of estimating robustness using sampling is that the computed esti-
mates will depend on the sample data. Hence, different results may be obtained
for repeated evaluations at the same design parameter values. Such a noisy ob-
jective function may cause the following undesirable behavior [10]: (i) A superior
candidate solution may be believed to be inferior and get eliminated; (ii) an in-
ferior candidate may be believed to be superior and get selected for survival and
reproduction; and (iii) the objective values may not monotonically improve over
the generations.
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Thus, a good methodology for robustness assessment should not only provide
accurate estimates of the sought measures but also present small variability with
respect to the number and the distribution of the samples.

With this in mind, in this section, the described surrogate models are evalu-
ated in the estimation of statistical measures of robustness, more specifically the
mean, µf , and the standard deviation, σf . In order to assess the quality of the
surrogates, the average relative error, Eq. (24), is used to estimate the accuracy,
and the average coefficient of variation, Eq. (25), is used to estimate the noise
caused by the limited number of samples. These metrics are defined below.

e =

∑N
i=0 |ŝi − sref |/sref

N
(24)

where, ŝi is the estimated value, sref is the reference value computed with a
MCS of 106 samples and N is the number of experiments.

cv =

∑N
i=0 σ(ŝi)/µ(ŝi)

N
(25)

where, ŝi is the collection of all estimates computed for xi. The experiment was
designed as follows:

1. For each test function, 20 points were randomly selected in the design space;
2. For each selected point xi a random sample of k points in U(xi) was gener-

ated and evaluated;
3. If surrogate models are used, the k samples are used to fit the surrogate (the

values of σ used by GRNNs and RBFNNs were set to 1.201 as suggested in
[11]). µf and σf are computed with a MCS of 106 samples evaluated with
the surrogate;

4. If surrogate models are not used, µf and σf are computed directly from the
k samples (DIRECT estimates);

5. This experiment was repeated 30 times for each xi.

Figure 2 illustrates this experiment for f(x) = x×sin(x)+12, where U(x) =
[x − 2, x + 2]. As mentioned before, the average relative error measures how
accurate the estimates are. The average coefficient of variation measures, in
some sense, the width of the shaded area (max −min estimates of each point)
which represents the noise.

Tables 1 and 2 show the average error and the coefficient of variation (in
parenthesis) obtained in the estimation of µf and σf , respectively. Dunn’s Test
of Multiple Comparisons [12] was used for the statistical analysis. Surrogate-
based estimates with average error significantly different (α = 95%) and better
than Direct are shown in blue. Significantly different (α = 95%) and worse
than Direct are shown in red. The column Problem consists of: problem name /
number of variables / number of samples (k).

Table 1 shows that, in some of the tested problems, the use of Kriging
improved the accuracy of the estimates of µf . It has also reduced the noise
throughout independent executions when compared to the other models. GRNN
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presented results close to the ones obtained when µf is directly estimated with
the samples (“Direct”). When Polynomials and RBFNN were used, the accuracy
decreased and the noise increased when compared with the other approaches.

Fig. 2. Surrogate models for robustness estimation.

Surrogate Model

Problem Direct Kriging RBFNN GRNN 2nd-order
Polynomial

f7a/5/10 0.095(0.118) 0.044(0.060) 0.092(0.121) 0.102(0.125) 0.083(0.106)

f7a/5/20 0.069(0.084) 0.008(0.011) 0.068(0.096) 0.068(0.084) 0.124(0.244)

f7a/5/40 0.050(0.061) 0.003(0.003) 0.049(0.068) 0.047(0.059) 0.016(0.019)

f7a/10/10 0.096(0.117) 0.090(0.114) 0.129(0.189) 0.092(0.113) 0.179(0.257)

f7a/10/20 0.066(0.081) 0.039(0.058) 0.064(0.088) 0.064(0.078) 0.066(0.081)

f7a/10/40 0.050(0.061) 0.008(0.015) 0.042(0.054) 0.043(0.053) 0.053(0.070)

f10a/5/10 0.150(0.189) 0.130(0.161) 0.458(0.676) 0.144(0.180) 1.243(5.228)

f10a/5/20 0.109(0.133) 0.052(0.072) 0.571(0.993) 0.104(0.131) 0.328(0.446)

f10a/5/40 0.076(0.095) 0.015(0.019) 0.541(0.783) 0.073(0.090) 0.102(0.130)

f10a/10/10 0.141(0.175) 0.140(0.173) 0.405(0.627) 0.150(0.189) 0.427(0.583)

f10a/10/20 0.101(0.122) 0.087(0.114) 0.242(0.315) 0.097(0.121) 0.249(0.330)

f10a/10/40 0.072(0.090) 0.032(0.048) 0.207(0.277) 0.073(0.091) 0.209(0.268)

f16a/5/10 0.057(0.072) 0.063(0.078) 0.196(0.320) 0.058(0.073) 0.140(0.197)

f16a/5/20 0.042(0.052) 0.041(0.050) 0.223(0.334) 0.044(0.055) 0.362(0.849)

f16a/5/40 0.030(0.037) 0.025(0.031) 0.325(0.515) 0.029(0.037) 0.043(0.055)

f16a/10/10 0.057(0.071) 0.059(0.073) 0.155(0.247) 0.056(0.071) 0.161(0.230)

f16a/10/20 0.039(0.049) 0.042(0.052) 0.092(0.121) 0.042(0.050) 0.089(0.115)

f16a/10/40 0.029(0.036) 0.027(0.033) 0.079(0.110) 0.030(0.037) 0.086(0.110)

Table 1. Using surrogates for the estimation of µf .
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Surrogate Model

Problem Direct Kriging RBFNN GRNN 2nd-order
Polynomial

f7a/5/10 0.173(0.215) 0.206(0.314) 0.184(0.223) 0.982(0.356) 0.252(0.212)

f7a/5/20 0.119(0.149) 0.039(0.041) 0.186(0.163) 0.982(0.253) 0.700(0.414)

f7a/5/40 0.079(0.098) 0.013(0.012) 0.120(0.103) 0.983(0.188) 0.035(0.038)

f7a/10/10 0.160(0.207) 0.915(3.112) 0.238(0.299) 0.978(0.304) 0.723(0.469)

f7a/10/20 0.120(0.148) 0.570(1.078) 0.163(0.189) 0.981(0.249) 0.290(0.182)

f7a/10/40 0.080(0.101) 0.122(0.282) 0.088(0.102) 0.982(0.180) 0.416(0.170)

f10a/5/10 0.177(0.228) 0.461(0.621) 1.128(0.682) 0.986(0.405) 7.103(1.262)

f10a/5/20 0.117(0.149) 0.179(0.254) 2.130(0.682) 0.989(0.367) 1.153(0.484)

f10a/5/40 0.085(0.106) 0.043(0.050) 2.234(0.575) 0.990(0.302) 0.229(0.229)

f10a/10/10 0.157(0.202) 0.947(3.786) 0.787(0.608) 0.983(0.306) 1.695(0.572)

f10a/10/20 0.101(0.125) 0.743(1.569) 0.557(0.406) 0.986(0.261) 1.114(0.324)

f10a/10/40 0.070(0.086) 0.294(0.555) 0.586(0.338) 0.989(0.241) 2.109(0.321)

f16a/5/10 0.190(0.235) 0.573(0.703) 1.270(0.814) 0.986(0.416) 1.120(0.526)

f16a/5/20 0.137(0.168) 0.401(0.375) 2.153(0.619) 0.988(0.339) 6.191(0.995)

f16a/5/40 0.093(0.115) 0.291(0.222) 3.186(0.795) 0.989(0.267) 0.215(0.238)

f16a/10/10 0.189(0.238) 0.952(3.196) 0.698(0.607) 0.982(0.347) 1.607(0.630)

f16a/10/20 0.133(0.166) 0.795(1.527) 0.581(0.505) 0.985(0.286) 0.999(0.334)

f16a/10/40 0.090(0.113) 0.521(0.673) 0.559(0.359) 0.988(0.250) 1.869(0.310)

Table 2. Using surrogates for the estimation of σf .

As can be seen in Table 2, the estimation of σf with surrogates is more
complicated than it is for µf . In the majority of the tested scenarios, there was
no advantage in using surrogate models. Their use led, in most of the cases, to
higher levels of noise and less accurate estimates. The exception was the problem
f7a for which Kriging presented some improvement when compared with Direct.

4.2 Surrogate-assisted robust optimization

In this section, we compare the aforementioned robustness estimation schemes
within the optimization framework presented in section 3. Matlab’s genetic al-
gorithm (GA) [11] was used as search engine. Each version of the algorithm is
used to minimize µf or σf for the 5-variable versions of f7a, f10a and f16a.
k is set to 20, the algorithm stops when the number of generations reaches 200
and 20 independent runs are performed for each version.

Fig. 3 presents the convergence curves of the minimization problems regard-
ing µf and σf for f10a and f16a. To generate these curves, the best individual
at each generation is evaluated using a Monte-Carlo simulation with 10000 sam-
ples. Given the 20 independent runs, the dots represent the average and the bars
represent the range of the best individuals’ fitness at that generation.

For the µf minimization problems, the framework versions with Kriging,
GRNNs and direct estimates (without surrogate models) presented the best re-
sults which, in turn, can be explained by the error and coefficient of variation
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values in Table 1. For the σf minimization problems, as expected from the results
in Table 2, the version with direct estimates outperformed the others. Interest-
ingly, RBFNNs also presented good performance, despite the high prediction
errors. This indicates that, for the tested problems, the prediction errors may
have had minimal influence on the ranks of the candidate solutions in the GA.
Overall, as can be seen in Fig. 3, the results presented by the framework with
direct estimates were more consistent throughout the tested problems.

Fig. 4(a) shows an example of a 3-phase 4-pole surface mounted permanent
magnet (SPM) motor. SPM motors have been widely used in applications such
as hybrid vehicles and robotics, and their performance highly depends on the
produced average torque (Tavg) and cogging torque levels ( Tcog).

It has been shown in [13] that an electrical machine’s performance can be
significantly affected by small tolerances in the manufacturing process. In this
context, instead of optimizing for the nominal values, we optimize the expected

f7a - Minimize µf f7a - Minimize σf

f10a - Minimize µf f10a - Minimize σf

f16a - Minimize µf f16a - Minimize σf

Fig. 3. Convergence curves
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(or mean) performance. In this formulation, the tolerances are set to 2% of the
lower bound values, that is, U(x) = [x−d,x+d] where di = 0.02× li. The four
design variables are indicated in Figure 4(a).

To solve this problem, Kriging was combined with the Matlab multi-objective
genetic algorithm (MOGA) [11]. Given the results presented in the previous
section, Kriging seems to be the obvious choice for this kind of problem. For
the sake of simplicity, from here on, this method is going to be called as robust
multi-objective genetic algorithm (RMOGA).

Fig. 4(b) shows the non-dominated solutions obtained using MOGA to solve
the optimization problem without uncertainties (non-robust front) and RMOGA.
The non-robust region is highlighted in the figure. It was observed that those
solutions are clustered in a small region of the design space which means that
a small change in the design variables is causing a large variation of the perfor-
mance. In the robust front, on the other hand, the solutions are well distributed
over the design space, representing the trade-offs between the two objectives. It
is worth noting that the front of the optimal designs moves toward lower aver-
age torque and higher cogging torque levels if the robust approach is used. This
demonstrates the trade-off between performance and robustness in this problem.

(a) SPM motor (b) Pareto-fronts

Fig. 4. SPM motor layout and solutions

5 Conclusion

In this paper, the use of surrogate models for robustness assessment has been
investigated. Although it has been shown that surrogate models may improve
the accuracy and reduce the noise caused by the small sample sizes, that does
not seem to happen very often. Even when the robustness estimation process
was improved, the optimization results did not seem to be affected. In fact, in
all the tested optimization problems, the surrogate-less method was either the
best or among the best performing methods.

Although Kriging presented good performance for the mean related problems,
for the general case, where no guarantees about the surrogate model’s accuracy
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can be provided, it is safer to rely directly on the data acquired from the original
problem set-up. If the surrogate model cannot be carefully constructed, it may
end up introducing error and noise to the objective function instead of removing
them. Although experiments in a larger set of problems with other types of
surrogate models may be required to provide a definitive answer to the question
proposed in the title, the results displayed here present a fair amount of evidence
showing that, in general, the use of surrogate models is not advantageous.
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Frederico G. Guimarães would like to thank the Minas Gerais State Agency for
Research and Development (FAPEMIG).

References

1. Yoon, S.B., Jung, I.S., Hyun, D.S., Hong, J.P., Kim, Y.J.: Robust shape optimiza-
tion of electromechanical devices. IEEE Transactions on Magnetics 35(3) (May
1999) 1710–1713

2. Kruisselbrink, J., Emmerich, M., Deutz, A., Back, T.: A robust optimization
approach using kriging metamodels for robustness approximation in the cma-es.
In: Evolutionary Computation (CEC), 2010 IEEE Congress on. (July 2010) 1–8

3. Yao, W., Chen, X., Huang, Y., van Tooren, M.: A surrogate-based optimization
method with rbf neural network enhanced by linear interpolation and hybrid infill
strategy. Optimization Methods and Software 29(2) (2014) 406–429

4. Xiao, S., Li, Y., Rotaru, M., Sykulski, J.K.: Six sigma quality approach to robust
optimization. IEEE Transactions on Magnetics 51(3) (March 2015) 1–4

5. Li, M., Silva, R., Lowther, D.: Global and local meta-models for the robust de-
sign of electrical machines. International Journal of Applied Electromagnetics and
Mechanics 51(s1) (2016) 89–95

6. Myers, R.H., Montgomery, D.C.: Response Surface Methodology: Process and
Product in Optimization Using Designed Experiments. 2nd edn. John Wiley &
Sons, Inc., New York, NY, USA (2002)

7. Jones, D.R.: A taxonomy of global optimization methods based on response sur-
faces. J. of Global Optimization 21(4) (2001) 345–383

8. Specht, D.F.: A general regression neural network. IEEE Transactions on Neural
Networks 2(6) (Nov 1991) 568–576

9. Mirjalili, S., Lewis, A.: Novel frameworks for creating robust multi-objective bench-
mark problems. Information Sciences 300 (2015) 158 – 192

10. Rana, S., Whitley, L.D., Cogswell, R. In: Searching in the presence of noise.
Springer Berlin Heidelberg, Berlin, Heidelberg (1996) 198–207

11. MATLAB: version (R2015a). The MathWorks Inc., Natick, Massachusetts (2015)
12. Dinno, A.: Dunn’s test of multiple comparisons using rank sums. Technical report

(2017)
13. Lei, G., Wang, T., Zhu, J., Guo, Y., Wang, S.: System-level design optimization

method for electrical drive systems - robust approach. IEEE Transactions on
Industrial Electronics 62(8) (Aug 2015) 4702–4713

393 sciencesconf.org:bioma2018:197525



Author Index
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Carmona Cortes Omar Andres, 284–295
Carozzi Lucia, 71–82
Carrillo Maria, 219–230
Congedo Pietro, 243–245
Cosar Ahmet, 95–98
Costa Paulo, 269–280
Crawford Broderick, 296–307
Curi Maria, 71–82

Danoy Gregoire, 71–82
Datta Dilip, 146–157
Deka Dimbalita, 146–157
Del Ser Javier, 219–230
Durán-Rosal Antonio Manuel, 29–40

Eftimov Tome, 161–172
Eryilmaz Meltem, 41–43

Fernandes Ad́ılia, 258–268
Fister Jr. Iztok, 56–67

Gallardo Ian, 219–230
Gallay Olivier, 14–25
Galvez Akemi, 219–230
Garcia Jose, 296–307
Ghorbanian Vahid, 382–393
Guerin Yannick, 68–70
Guijo-Rubio David, 29–40
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